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Quantum plasmas with or without a uniform magnetic field. II. Exact low-density free energy

F. Cornu
Laboratoire de Physique, Laboratoire associe´ au CNRS URA 1325, Ecole Normale Supe´rieure de Lyon,

46 allée d’Italie, F-69364 Lyon Cedex 07, France
~Received 20 January 1998!

The exact analytical expression of the free energyf of a quantum Coulomb plasma in the presence of a
uniform magnetic fieldB0 is produced at low densityr. This regime corresponds to low degeneracy, weak
Coulomb coupling but any strength of the magnetic field and fully quantum dynamics. Thusf is expanded
around its value for an ideal gas in the Maxwell-Boltzmann~MB! approximation which provides a description
of orbital diamagnetism and Pauli paramagnetism. Ther expansion forf is derived from an adequate Mayer
diagrammatic representation of the ratio between the plasma density and the density of the ideal gas with the
same chemical potentials and MB statistics. A systematic scaling analysis of the dependence of Mayer bonds
upon density is devised. This provides a natural truncation of the trace of the two-body Gibbs factor as well as
diffraction contributions specific to the long range of the Coulomb potential. Ther3/2 term in f is the purely
classical Debye contribution. From orderr2 on, B0 is involved through quantum dynamical and statistical
effects which are the root of ferromagnetism.~Moreover, we retrieve the purely classical contributions at order
r5/2 in a very compact form.! Our results are compared with semiclassical expressions in the case of the
one-component plasma.@S1063-651X~98!02710-X#

PACS number~s!: 05.30.2d, 05.70.Ce, 71.45.Gm
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I. INTRODUCTION

The present paper is devoted to the principles of the d
vation of exact analytical low-density expansions in t
framework of the loop formalism of paper I, which take
exchange effects systematically into account. The metho
applied to the calculation of the free energy of multi-
one-component plasmas in the presence—as well as in
absence—of a uniform magnetic fieldB0 . @A one-
component plasma~OCP! is a system where only one speci
of charges is moving in a rigid neutralizing backgroun#
The Hamiltonian of a multicomponent plasma reads

H $Na%~B0!5(
i

1

2ma i

S pi2
ea i

2c
B0`r i D 2

2(
i

ga i
mBa i

Si•B0

1
1

2(i 5” j
ea i

ea j
vC~r i2r j !, ~1!

with the same notations as in Paper I. The low-density li
corresponds to a regime of low degeneracy and weak C
lomb coupling for any strength of the uniform magne
field. Thus the volume density of free energyf is expanded
around its valuef id

MB for a quantum ideal gas in the Maxwel
Boltzmann~MB! approximation and with the same densiti
in the presence ofB0 . We stress that the results contain
quantum effects at any order in\. We get the analytica
expression off up to orderr5/2, wherer is a generic notation
for the particle densities. We use the convention that a t
of orderrn may include powers of lnr. ~In other words, the
possible logarithmic terms are considered to be of orderr0

[1.) These lnr terms as well as half-integer powers of th
density appear because of collective screening effects du
the long range of the Coulomb potential. We retrieve
results up to orderr5/2 for the caseB050 produced in Refs.
PRE 581063-651X/98/58~5!/5293~29!/$15.00
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@1# and derived in Refs.@2–4#, though our method start
from a different thermodynamic expression for the free e
ergy and treats exchange effects systematically from the
ginning instead of perturbatively.~When B050 the low-
density equation of state properly describes the core of
Sun, where dynamics proves to be controlled by Debye
exchange effects@5#.! In the path integral formalism, the
magnetic field shows up only in phase factors and the st
tures of both the derivation and results are similar whet
B0 is switched on or not. A brief discussion of the effec
arising from the presence of the magnetic field has alre
been given in Ref.@6#.

We point out that this exact calculation starts from t
first principles of quantum mechanics. All contributions th
can be interpreted as being purely classical do not invo
the magnetic field, in agreement with the Bohr–van Leeuw
theorem: magnetism is intrinsically quantum in its statisti
origin. The MB free energyf id

MB for the ideal gas already
incorporates the orbital diamagnetism arising from quant
dynamics as well as the Pauli paramagnetism due to the
pling betweenB0 and the spin quantum degree of freedo
These one-body phenomena appear at the first order in
sity, namely at orderr. A correction of orderr3/2 comes
from the exponential screening of the monopole poten
created by a charge and its polarization cloud at large
tances. The latter screening is valid at both classical
quantum levels and this first correction tof id

MB is independent
from B0 . The combined effect of the one-body spinorial co
pling with the external magnetic field, Coulomb interaction
and quantum statistics emerges only from orderr2 on. It
both renormalizes and mixes diamagnetism and paramag
ism. As a consequence, an effective coupling between s
shows up, though there is no fundamental magnetic dip
interaction between spins in the Hamiltonian. In the se
that ther2 term in the free energy can be related to an
5293 © 1998 The American Physical Society
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5294 PRE 58F. CORNU
fective two-body potential, the root of ferromagnetism is
ready present at the scale of the two-body exchange effe
the presence of Coulomb interaction.

The rest of the paper is organized as follows. In Sec. II
present the main results. The dimensionless coupling par
eters of the problem at finite temperature 1/b are discussed
in Sec. II A. The reference free energy is recalled in Sec.
and our results for the free energy are given in Sec. II C. T
limiting case of the OCP free energy and its semiclass
value are discussed in Sec. II D. The main features of
method are discussed in Sec. II E and comparison is m
with another formalism that allows one to derive the ex
low-density free energy in the absence ofB0 .

In Sec. III the scheme for low-density expansions is d
played. In Sec. III A we give the thermodynamic formu
that relatesf to f id

MB through the primitive of ln(ra /ra
id!,MB)

where ra is the density in the plasma andra
id!,MB is the

density in an ideal gasS id! in the MB approximation and
with the same chemical potentials. We select the relati
between the particle and loop densities together with a us
diagrammatic representation of the latter one~Sec. III B!.
The first terms in ther-expansion of various intermediat
objects are obtained readily in Sec. III C. The explicit expr
sions for the ideal gas which plays the role of the refere
system are given; in particular, the covariance of paths a
ciated with a particle only submitted to a uniform magne
field is derived in Appendix A by using three different met
ods. In Sec. III D we investigate the strategy of calculatio
more precisely. First, the expansion of the loop dens
around its noninteracting value for the same chemical po
tial is performed in powers ofk and of the loop densities. A
the same time, the inverse screening lengthk of the re-
summed interaction between total loop charges is expan
around its Debye value at the first order in density. Then,
a recurrence scheme, we expand the ratiora /ra

id!,MB , k,
and the loop density in powers of the particle densities. T
general recurrence scheme is exemplified by the performa
of its first step. In Sec. III E, by anticipation of the result
the diagrammatic survey, we give the formal structure of
low-density expansions for the free energy and for the d
sity in terms of the first terms in ther expansion of the loop
densities with degeneracy indicesp51 andp52.

In Sec. IV we discuss the first part of the procedu
namely, the scaling analysis in loop density of Mayer d
grams. For that purpose we introduce a formal decomp
tion of the bonds in powers ofk ~Sec. IV A!. For bonds
entirely scaled byk, and which are integrable at finite den
sity, a mere Taylor expansion at large distances is used.
dressed bond, which involves not onlyk but also lengths tha
do not depend on the density, is not absolutely integrabl
large distances, and a more delicate and systematic ex
sion in Fourier space is devised. The useful explicit valu
used in the following are derived in Sec. IV B and a proc
dure to determine the minimal order of any diagram in lo
density is developed in Sec. IV C.

In Sec. V explicit contributions from diagrams involve
in the loop densityra,p(X) for p51 are calculated and col
lected in order to exhibit partial derivatives with respect
some densityra . The purely classical terms are derived
Appendix B. Thus we get the final formula exhibited in Se
II C.
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In Sec. VI we turn to the case of the one-compone
plasma. In Sec. VI A the free energy of the OCP is deriv
from the formula valid for a two-component plasma by sen
ing the mass of one species to infinity and its charge to z
while keeping charge neutrality. An ingredient of the lim
ing process is the derivation of the small-x behavior of the
generalized direct functionQ(x,uC) introduced in Ref.@7#
for uC50. The OCP has a well-behaved classical limit in t
MB approximation, because all moving charges are of
same sign and quantum statistics is not needed to avoid
macroscopic collapse. In Sec. VI B we analyze the regim
of parameters in which the system goes to a semiclass
limit for any strength of Coulomb or orbital magnetic co
plings. In Sec. VI C, we check that the low-density expa
sions are coherent with the semiclassical ones given in R
@8# for any value ofuC[bmBB0 . ~A semiclassical investi-
gation in the limiting caseuC!1 was made in Ref.@9#.!

II. MAIN RESULTS

A. Dimensionless coupling parameters

As announced above, from now on, we only consider s
tems for which statistics is weakly quantum. Leta be the
mean interparticle distance. As long as all particle densi
are of the same order, we do not distinguish the aver
distance between any kind of particles and the distanceaa
between two particles of the same speciesa. The de Broglie
thermal wavelengthla[Ab\2/ma is the amplitude of the
quantum position fluctuations of a free particle with ener
of order 1/b and sola /a measures the average overlap
wave functions at temperatureT. A weak degeneracy o
quantum statistics is characterized by

la!a. ~2!

Then the average thermal energy per particle at equilibr
is given by Maxwell-Boltzmann statistics and is of ord
1/b.

Therefore dimensionless coupling parameters are defi
as the ratios of average interaction energies and the orde
magnitude 1/b. Inspection of the Hamiltonian shows tha
there are three dynamical parameters. For the Coulomb
teraction the coupling parameter is

Gag[
bueaegu

a
5

bag

a
, ~3!

wherebag[bueaegu is the two-body average classical di
tance of closest approach for speciesa and g ~also called
Landau length! for a relative trajectory governed by the Co
lomb interaction and with energy of order 1/b. In the fol-
lowing, we will use the notationG instead ofGag when all
chargesea are of the same order of magnitude as well as
densitiesra . ~Such a situation is compatible with the loc
neutrality equation.! The dimensionless coupling paramete
uCa and uSa for the magnetic interactions are equal tob
times the quantum energies associated with the orbital
tion and the spinorial precession in the quantum level w
lowest energy, respectively:
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uCa5bmBaB05b
1

2
\vCa , ~4!

where vCa5eaB0 /mac is the cyclotronic frequency (B0
[uB0u), while

uSa5
ga

2
uCa , ~5!

because the spinorial frequency is half of the cyclotronic o
times the Lande´ factor ga .

The coupling parameters depend on the fundamental
stants and on the thermodynamic parametersT andr for the
Coulomb interaction,T andB0 for the magnetic case. Whe
the density is varied, the length scale that measures the
lective Coulomb effects, namely, the Debye lengthjD

[@4pb(araea
2 #21/2, must be introduced. Up to a numeric

factor,

Gag}S a

jD
D 2

. ~6!

Thus, according to Eq.~3!,

G!1⇔bag!a!jD . ~7!

On the other hand,uCa is linked to a lengthl Ca that depends
only on B0 ~and not on the density!,

uCa5
1

2S la

l Ca
D 2

5
1

2

la

RCa
. ~8!

In Eq. ~8! l Ca5A\c/eaB0 is the characteristic quantum
length~radius of ‘‘orbits’’! associated with the first quantum
Landau level andRCa[Amc2/be2B0

2 is the radius of the
classical cyclotronic orbit of a particle with energy 1/b. As a
consequence

uCa!1⇔la! l Ca!RCa . ~9!

B. Low-density regime

In the present and following papers, we are interested
the low-density limit that corresponds to a regime of lo
degeneracyla!a and weak Coulomb coupling,

G!1, ~10!

whereas the interaction with the magnetic field is of a
intensity.

In the absence of interactions, the Maxwell-Boltzma
approximation is well defined. The Hamiltonian is reduced
that of Pauli’s theory. The volume free energy for an ide
gas with MB statistics reads

b f id
MB~b,$ra%,B0!

5(
a

ra$ ln@~2pla
2 !3/2ra#21%1b f para

MB ~$ra ,uSa%!

1b f dia
MB~$ra ,uCa%!. ~11!
e

n-

ol-

in

y

o
l

The first term is the free-energy density of an ideal gas in
absence of magnetic field and the second and third terms
the paramagnetic and diamagnetic ideal-gas contribution
the MB approximation, respectively.

b f para
MB ~$ra ,uSa%!5(

a
ralnS sinhuSa

sinh@~2Sa11!uSa# D
~12!

and

b f dia
MB~$ra ,uCa%!5(

a
ralnS sinhuCa

uCa
D . ~13!

The volume magnetization is derived from the density
free energy by the formulaM52] f /]B0 at fixed densities
and fixedb. For the ideal gas in MB approximation

Mid
MB52(

a
ramBa@gaSaBSa

~2SauSa!1L~uCa!#,

~14!

whereBSa
is the Brillouin function of orderSa ,

BSa
~x![

1

2Sa
F ~2Sa11!cothS ~2Sa11!

x

2Sa
D2cothS x

2Sa
D G

~15!

andL is the Langevin functionL(x)[cothx2(1/x).

C. Free energy of a multicomponent plasma

For sets of densities that satisfy the local neutrality re
tion (aeara50, we get

b f ~b,$ra%,B0!5b f id
MB1b f $3/2%1b f $2,5/2%1o~r5/2!,

~16!

whereo(rn) denotes a term of order greater thanrn. In Eq.
~16!, as in the following, the orders in density will be de
noted by braces, whereas the orders inuku will be referred to
in parentheses. At orderr ~and r lnr), all effects are con-
tained in the contributionb f id

MB @see Eq.~11!# from the gas
of independent particles in the MB approximation. In t
weak-coupling and low-degeneracy regime, the next con
bution is of orderr3/2 and it coincides with the classica
excess free energy in the linearized Debye-Hu¨ckel approxi-
mation,

b f $3/2%5b f D52
kD

3

12p
. ~17!

Indeed, according to Paper I, the bare two-body Coulo
potential is partially screened by collective effects over
length scalek21. k depends on the density and tends to t
Debye valuekD when exchange effects are negligible. W
stress again that the purely classical Debye free energyf D
does not involveB0 , in agreement with the Bohr–van Leeu
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wen theorem. Effects from many-body interactions beyo
the linearized mean-field classical Debye approximation
gether with short-ranged exchange mechanisms appear
t.
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from orderr2 on. At ordersr2 andr5/2, the exact contribu-
tions arising from quantum dynamics and quantum statis
with interactions are
b f $2,5/2%52
1

2(a ~21!2Sa@11bkDea
2 #

tanhuSa

tanh@~2Sa11!uSa#
ra

2sinhuCa

uCa
~4pla

2 !3/2E dr ^2r ue2bhrel, aur & ~18a!

2
1

2(a,g
@11bkDeaeg#rarg lim

R→`
H E

r ,R
drFsinhuCa

uCa

sinhuCg

uCg
~2plalg!3^0,r ue2bHagu0,r &

211
beaeg

r
2

~beaeg!2

2r 2 G1
2p

3
~beaeg!3ln~kDR!J 2

p

3
@C1 ln3#b3S (

a
raea

3 D 2

2
p

3
@211C12ln2#b4kDS (

a
raea

4 D 2

~18b!

1
2

3
C1b5

1

kD
S (

a
raea

3 D 2S (
g

rgeg
4D 1

2

3
C2b6

1

kD
3 S (

a
raea

3 D 4

~18c!

1
1

24
\2b2kD

3 (
a

ra

ea
2

ma
1

1

6

b\c

B0
kD

3 (
a

raeaL [3]~uCa!, ~18d!
tum

ther
lec-

g
ect

ct
n

of

d
c.

-
s

the
be
where C50.577 215 . . . is theEuler-Mascheroni constan
In the contributions from orderr2 on, the magnetic field
appears through normalization factors involvinguCa and
uSa , through Hamiltonian operators, and through ‘‘diffra
tion’’ contributions which are functions of theuCa’s . Hag is
the two-body Hamiltonian without the spin contribution,

Hag~1,2![
1

2m1
Fp12

ea

2c
B0`r1G2

1
1

2m2
Fp22

eg

2c
B0`r2G2

1
eaeg

ur12r2u
. ~19!

For two particles of the same species, the position of
center of mass, with mass 2ma and charge 2ea , and that of
the relative particle, with massma/2 and chargeea/2, are
separable variables even whenB05” 0. The Hamiltonian cor-
responding to the latter fictitious particle in the Coulom
potential created by a charge 2ea is hrel,a ,

hrel,a~B0![
1

ma
S p2

ea

4c
B0`r D 2

1
ea

2

r
. ~20!

For the center of mass the de Broglie wavelength is equa
A2la and uCa has the same value as for each particle
speciesa. Thus~see Sec. III C 2!

E dr ~2pla
2 !3S sinhuCa

uCa
D 2

^r ,0ue2bHaau0,r &

5E dr ~4pla
2 !3/2

sinhuCa

uCa
^2r ue2bhrel,aur &. ~21!
e

to
f

The bound and diffusion states are contained in the quan
density-matrix elements.

The exchange effects, which are short ranged whe
there are interactions or not, are not perturbed by any col
tive effect at orderr2, while, at orderr5/2, the bare contri-
bution is only renormalized by a multiplicative factor arisin
from classical Debye screening. On the contrary, the dir
term involves screening in an essential way from orderr2.
Indeed, the truncation of the matrix element in the dire
term ~18b! ensures that the integral only diverges as a lR
term which is exactly compensated by the ln(kDR) inside the
braces; this truncation arises from the low-density limit
the screened bonds in a natural way.

The constants in Eq.~18c! read

C156pE
0

`

du
@arctan~u/2!#2

11u2 ~22!

and

C25212p2E
0

`

du
@arctan~u/2!#2

~11u2!2 2
1

16
Ĩ bridge 6, ~23!

where Ĩ bridge 6 is an integral corresponding to a so-calle
‘‘bridge’’ diagram with six Debye bonds, as defined in Se
V D. The expressions forC1 andC2 are more compact than
those given in Ref.@3#. We notice that the analytical expres
sion for Ĩ bridge 6 may also be written as the sum of formula
~4.2! and~4.3! in Ref. @3# with a global multiplicative factor
1/2 which was omitted in these equations. Moreover,
most recent numerical values for these constants can
found in Ref. @10#, 2C1/3[a1510.134 779 10 . . . , and
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2C2/352a2a2a2,v with a2,v corresponding to the term

proportional to Ĩ bridge 6 and a2a to the other term in
C2 ; a2a58.052 81460.000 001 anda2v51.769960.0001.
If powers of kD could be forgotten, the terms in Eq.~18c!
might be interpreted in terms of effective interactions b
tween three or four bodies according to their powers inr, as
in the case of short-ranged forces. However, the power
kD come from~linear or nonlinear! collective effects, and the
interpretation is not so simple.~In particular, there is a dress
ing of nonlinear effective interactions by linear Deb
bonds.!

The term ~18d!, also called the diffraction term in th
absence ofB0 , is a quantum dynamical effect due to the fa
that the long-ranged Coulomb potential is only algebraica
screened. This term vanishes at orderr2 because of the loca
neutrality relation. It can be decomposed into a part indep
dent fromB0 plus a correction which involves a generaliz
tion L [3] (x) of the Langevin function that appears in th
orbital magnetization~14! of a gas of independent charge
L [3] (x)[L(x)2x/3 behaves as2x3/45 whenx goes to zero.
Thus the correction to the diffraction term that is due to
magnetic field is proportional toB0

2 when B0 goes to zero,
whereas it goes to a constant in the limit of strong fields. T
diffraction term may be expressed in terms of the plas
frequenciesvpa5@4pea

2ra /ma#1/2, which are related to the
dynamics of the center of mass.

All thermodynamic quantities can be obtained from t
free-energy density. For instance, the pressureP52 f
1(ara] f /]ra has an expression similar to that off up to
order r5/2. On the contrary, the expression of the volum
magnetizationM52] f /]B0 requires a detailed spectra
analysis, which is far beyond the scope of the present pa
The diamagnetic and paramagnetic magnetizations of
MB quantum ideal gas are renormalized and coupled by
teractions and quantum statistics. In Eq.~158! the term
ra

2tanhuSa /tanh@(2Sa11)uSa# is the sum of the squared den
sities of particlesa in the 2Sa11 spin states in the absenc
of Coulomb interactions, and the combination of exchan
and direct density-matrix elements in position space is lin
to the origin of ferromagnetism.

D. OCP free energy

The formulas for the OCP are derived in Sec. VI fro
those established for a two-component plasma by using
following procedure. First, the mass of one given spec
goes to infinity; then its charge vanishes as its density
comes infinite so that their product is kept constant and
sures global neutrality.

We introduce a generalization of the standard notationQ
andE used in Ref.@7#,

QS 2
be2

l
,uCD

5
1

4pl3 lim
R→`

H E
r ,R

dr F ~4pl2!3/2
sinhuC

uC
^r ue2bhrelur &

211
be2

r
2

b2e4

2r 2 G1
2p

3
b3e6F lnS 3R

l D1CG J ~24!
-

of

t
y

n-

e

e
a

er.
e
-

e
d

he
s
e-
n-

and

ES 2
be2

l
,uCD52Ap

sinhuC

uC
E dr ^2r ue2bhrelur &. ~25!

The difference with the formulas forB050 is that there ap-
pear two dimensionless variables,2be2/l anduC , instead
of one. With these notations, we get

b f OCP~b,r,B0!

5r$ ln@~2pl2!3/2r#21%1r lnS sinhuC

uC
D

1r lnS sinhuS

sinh@~2S11!uS# D2
1

12p
kD

3 ~26a!

22p~21!2Sr2@11bkDe2#
tanhuS

tanh@~2S11!uS#

3l3E~2be2/l,uC! ~26b!

22pr2@11bkDe2#l3Q~2be2/l,uC! ~26c!

2
p

3
b3r2e6@11bkDe2# ln~lkD!

1b4kDr2e8H p

3
~11 ln322ln2!1

C1

6p
1

C2

24p2J
~26d!

1
p

3

b2\2

m
r2e2F11

1

2
bkDe2GF11

2

uC
L [3]~uC!G

1o~r5/2!. ~26e!

The expression for the pressure has an analogous struc
as in the case of the multicomponent plasma.

Up to orderr5/2, the result for the OCP is similar to Eq
~16!, apart from the diffraction term, which does not vani
at order r2 and reads (4p/3)(b\ec/B0)r2L [3] (bmBB0).
The origin of the diffraction terms for the OCP may b
viewed as the sum of two contributions. First, there is
contribution from moving particles as for a multicompone
plasma, but in the latter system the term of orderr2 is can-
celed, because all species move and obey the neutrality
tion. Second, there is an extra contribution at orderr2 that
comes from the expansion of the direct quantum termQ12
between species 1 and 2 when particles of species 2
turned into a rigid background.~At orderr5/2 the coupling in
e2 is of higher orders and the contribution fromQ12 disap-
pears in the limit wherem2 goes to infinity ande2 vanishes.!

Besides, in regimes of low degeneracy and weak quan
dynamical effects atuC[bmBB0 fixed, the expression of the
OCP free energy can be expanded with respect to\, because
the OCP has a well-defined thermodynamic limit even w
MB statistics. The exchange density-matrix element in po
tion space vanishes exponentially fast when\ goes to zero
@8,9,11#. According to Ref.@8#, in the semiclassical limit,
valid for any strength of Coulomb and magnetic couplings
a regime of low degeneracy, the quantum term of low
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order in\ in the free-energy density is the contribution fro
the MB gas of independent charges, which is of orderr. The
interactions are involved only in the next-order\2 term,
which is exactly proportional tor2 for any density@8,9#. We
have checked that the first two terms in the\ expansion of
the exact low-density free energy up to orderr5/2 ~valid for
weak Coulomb coupling and derived in the present pap!
coincide with the first four terms in ther expansion of the
exact semiclassical free energy up to order\2 ~valid for any
Coulomb coupling and given in Ref.@8#!. In particular, the
contributions of orderr5/2 in the low-density expression can
cel each other at order\2, as they should.

E. Comments about the method

A few comments may be made about our method. In
absence of magnetic field, pioneering work about the der
tion of the free energy was achieved by the method of eff
tive potentials@7#, and an exact analytic expression up
orderr5/2 is given in Ref.@1# and derived in Refs.@2–4#. Our
method, which has various similarities with that used in
latter references, allows us first to retrieve the previous
sults and to study very straightforwardly, and to our know
edge for the first time, the differences that originate from
magnetic field. Indeed, as already stressed in Paper I,
presence of the magnetic field is entirely contained in
phase factor incorporated in the generalized fugacity of e
loop in the path integral formalism. Moreover, in the low
density limit, calculations can be performed explicitly~in
terms of matrix elements of a two-body Hamiltonian!, be-
cause they involve the covariance of Brownian paths of
dependent particles in a magnetic field: the latter problem
solvable and the covariance can be exactly expresse
terms of products of hyperbolic functions.

Two advantages of Mayer-diagram methods derived fr
the path integral representation, and which are also use
Refs.@2–4#, are the following. First, the origin of effects a
stake is clearly exhibited. Classical~and quantum! screening
of monopole-monopole interactions is described by the b
Fcc, diffraction effects resulting from the combination of th
long range of the Coulomb potential and the wave nature
quantum dynamics are described by the bondFcm, while
short-distance properties generated by quantum dynam
such as the absence of collapse of two opposite charge
gether with the existence of bound and scattering states
contained in the bondFR .

Another interest of the Mayer-bond method is that a sc
ing analysis allows us to select very quickly from whic
order in density a diagram contributes. Moreover, ha
integer powers of the density appear in the low-density
pansions in a quite natural way; they come through a len
scale arising from screening collective effects which is
only length depending on the density that is involved in
three kinds of bonds.

The differences between our method and that used
Refs. @2–4# are essentially of two kinds. First, in the loo
formalism exchange effects are not treated perturbativ
from the start but they are handled systematically. For
stance, up to orderr5/2, the exchange contribution come
from the loop density with exchange degeneraciesp equal to
2 and from the expansion ofk around its low-degenerac
r
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valuekD in the contribution from interaction bonds for loop
with p51.

Second, our basic formula for the derivation of the fr
energy reduces the problem to the identification of par
derivatives with respect to the particle density in the expr
sion of the diagrammatic expansion of the density around
MB value for an ideal gas. In the other Mayer-diagra
method@2–4#, the free energy is related to the integral of t
internal energy for a coupling parameterg when g varies
from 0 to 1. This integral is expressed in terms of the d
grammatic expansion of the particle correlations~times a
Coulomb interaction!. The difference in the starting formul
has three consequences. First, the diagrams to be consid
in the diagrammatic expansion ofr are less numerous tha
in the expansion of the correlation. Second, the identificat
of partial derivatives proves to be more elementary than
subtle integration over the coupling parameterg and the de-
vices needed to obtain an explicit result only in terms
matrix elements at the considered value of the coupli
namely,g51. Third, from a practical point of view, the ne
cessity of collecting various contributions as the sum of
different terms in the derivative of a product of functions is
good guide to avoid numerical mistakes. Indeed, the glo
coefficient 1/2 that is missing in Eqs.~4.2! and~4.3! of Ref.
@3# and which comes from a symmetry factor must be tak
into account in the analogous part of our calculation in or
to recognize a sum of classical ‘‘bridge’’ contributions as t
derivative of a bridge function times a function of densiti
andkD . Nevertheless, we stress that the existence of the
methods is a good means for checking analytical results
rived from rather long procedures.

III. SCHEME FOR LOW-DENSITY EXPANSIONS

A. Thermodynamic formula for the free energy

In this subsection we derive an integral thermodynam
relation between the free-energy density and the densi
This relation provides a starting point for the calculation
the free energy that is different from the procedure used
Refs.@2–4#. We start from the relation

]~b f !

]ra
U

b,$rg%g5” a,B0

5bma . ~27!

Let ra
id!,MB(b,$ma%,B0) be the density of particles of spe

ciesa in an ideal gasS id! in the MB approximation at the
same inverse temperatureb and with the same chemical po
tentials ma . According to the well-known expression o
ra

id!,MB , which will be rederived in the following:

bma5 lnS ~2pla
2 !3/2ra

sinhuSa

sinh@~2Sa11!uSa#

sinhuCa

uCa
D

2 lnS ra

ra
id!,MBD . ~28!

In Eq. ~28! the densityra of the interacting system has bee
artificially introduced.

Now let us consider another ideal gasS id in the MB ap-
proximation at the same inverse temperatureb and with the
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same densities$ra%. Inspection of the expression~11! shows
one that the first term in the right-hand side of Eq.~28! is just
equal to](b f id

MB)/]ra . Subsequently,

b f ~b,$rg%,B0!5b f id
MB~b,$rg%,B0!2E lnS ra

ra
id!,MBD ,

~29!

where * ln(ra /ra
id!,MB) denotes the primitive of

ln(ra /ra
id!,MB)5ga(b,$rg%,B0) that reduces to the ideal-ga

exchange terms when there is no interaction. The deriva
of the low-density expansion of the free energy is thus
placed by the calculation of the low-density expansion ofra
around its value for an ideal gasS id! in the MB approxima-
tion and with the same chemical potentials$mg%.

B. Basic relations valid at any density

The low-density expansions will be derived from the thr
following equations. First, the relation between the parti
densityra and the loop densitiesra,p(Xp) of speciesa with
various exchange degeneraciesp reads

ra5 (
p51

`

pE D~Xp!ra,p~Xp!. ~30!

Contrarily to what was done in Paper I, in the present pa
we add a subscriptp to the loop-shape variableX in order to
keep track of the exchange degeneracy.

Second, the representation of the loop densityr(L)
5ra,p(Xp) in terms of diagrams where each internal po
has a weightr(L) and where bonds depend on the lo
density only throughk[4pb(a,p(pea)2*D(Xp)ra,p(Xp)
takes the form

ra,p~Xp!5za,p~Xp!exp@J~La!#, ~31!

where

za,p~Xp!5S ebma

~2pla
2 !3/2D p

ha
p21

p

3
sinh~@2Sa11#puSa!

sinh~puSa!

3e~ ie/2\c!B0• E0
pXp~t!`dXp~t!e2bEb

int
~Xp!, ~32!

with the definitions given in Sec. III C of Paper I.J(L) arises
from the Mayer diagrams in the presence of interactions
involves powers ofr(L)nkm with 2n1m.0. When p
51, za,1(j) involves no interaction. Thus, in the absence
interactions, according to Eq.~31!, the loop density forp
51 in the quantum ideal gas with the same chemical po
tials $mg% is ra,1

id!(j)5za,1(j). Since the valuera
id!,MB of the

ideal-gas density in the MB approximation reduces to
contribution from the loops with an exchange degeneracp
equal to 1, according to Eq.~30!, it reads

ra
id!,MB5E D~j!za,1~j!. ~33!
n
-

e

er

t

d

f

n-

e

Third, the expression ofk itself has a low-density expan
sion, because, as shown in Ref.@12#,

k5H kD
2 14pb(

a
ea

2E drraa
~2! Tuexch~r !J 1/2

, ~34!

where kD
2 [4pb(aea

2ra is the squared inverse Deby
length. In Eq.~34!

raa
~2! Tu exch~r !5 (

p52

`

pE D~Xp! (
l* 52

p

d~xl* 2x12r !ra,p~Xp!

~35!

is the part of the particle-particle distribution function arisin
from the configurations where the two particles separated
the distancer belong to the same exchange cyclic permu
tion.

C. First simple results at low density

1. Reference quantities

In a low degeneracy and weak Coulomb coupling regim
ra is of order ra

id,MB , with ra;a23, ra
id,MB

;exp(bma)/(2pla
2)3/2, andl!a. Thus the small dimension

less parameter that measures the order in the expansio
exp(bma);(l/a)3 and za,p(Xp) is of order ra

p , za,p(Xp)
5O(rp). O(rp) denotes a term which is of orderrp,
namely, whose density expansion starts at orderrp. Accord-
ing to Eqs.~31! and ~32!, the term inra,p(Xp) that is of
lowest order in densityra coincides withza,p(Xp) and

ra,p~Xp!5O~ra
p !. ~36!

Henceforth, the part~35! of the correlation that comes from
exchange effects involves has a low-density expansion wh
starts at orderr2. ~Indeed, exchange involves at least tw
particles.! Thus, according to Eq.~34!,

k5kD1O~r3/2!, ~37!

wherekD is of orderr1/2 by definition. Another consequenc
of Eq. ~36! is that, according to Eq. ~30!, ra
5*D(j)za,1(j)1o(r), whereo(r) denotes a term which is
of greater order thanr. Subsequently, according to Eq.~33!,
we retrieve that

ra5ra
id!,MB1o~r!. ~38!

We notice that if the neutrality relation

(
a

eara50 ~39!

were not satisfied, then, according to the explicit low-dens
expressions derived below in Sec. IV, the expression ofra
calculated from the Mayer diagrams would not be equa
ra

id!,MB at first order in densityr. Since this coincidence
must happen in the weak Coulomb coupling and lo
degeneracy limit, the Mayer diagrams must be calcula
with the constraint~39!. ~Subsequently, the ideal gasS id

defined in Sec. III A also satisfies the neutrality relation.!
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2. Explicit results for the ideal MB gas

The explicit analytical results in the case of the ideal g
that will be used are the following. IfB050, uSa50, and
za,1(j) is independent fromj. Thus, according to Eqs.~32!
and ~33!, ra

id!,MB reduces to

ra
id!,MB~B050!5~2Sa11!

ebma

~2pla
2 !3/2

. ~40!

When B05” 0, uSa5” 0, andza,1(j) involves a phase facto
arising from the magnetic field and the spin degeneracy
tor 2Sa11 is changed into a paramagnetic expression. T

ra
id!,MB~B05” 0!5

sinh~@2Sa11#uSa!

sinhuSa

uCa

sinhuCa

ebma

~2pla
2 !3/2

.

~41!

In Eq. ~41! the well-known diamagnetic contribution t
ra

id!,MB is derived by using the Feynman-Kac-Itoˆ formula,

E D~j!expF iela
2

2\c
B0•E

0

1

j~s!`dj~s!G
5~2pla

2 !3/2^r uexp@2bhB0 ,a
~0! ur &5

uCa

sinhuCa
, ~42!

where hB0 ,a
(0) is the position-dependent part of the Ham

tonian of one particle of speciesa in the magnetic fieldB0 ,

hB0 ,a
~0! 5

1

2ma
Fp2

ea

2c
B0`r G2

. ~43!

~See Appendix A for further details.! For convenience’s
sake, in the following we shall use the normalized meas
DB0

(j), such that*DB0
(j)51. According to Eq.~42!

DB0
~j![

sinhuCa

uCa
D~j!e~ ieala

2 /2\c!B0•E
0

1

j~s!`dj. ~44!

Contrarily to the case of free motion, the covariance in
presence ofB0 ,

covmn
a ~s,s8;B0![E DB0

~j!@j~s!#m@j~s8!#n

5covmn~s,s8;uCa!, ~45!

depends on the considered species whenm andn are indices
of coordinates in the plane perpendicular to the direction
B0 , because the coupling with the magnetic field depends
ea /ma . Properties derived from symmetry arguments ha
been displayed in Sec. V C of Paper I. The values of
various nonvanishing covariances are calculated by three
ferent methods in Appendix A with the following results.
the z-axis direction, the motion is still free, and

covzz~s,s8!5 inf~s,s8!@12sup~s,s8!#. ~46!

On the contrary
s

c-
s

re

e

f
n

e
e
if-

covxx
a ~s,s8;B0!5covyy

a ~s,s8;B0!

5
1

uCasinhuCa
cosh@~s2s8!uCa#

3sinh@ inf~s,s8!uCa#

3sinh$@12sup~s,s8!#uCa% ~47!

while

covxy
a ~s,s8;B0!52covyx

a ~s,s8;B0!

52 isgn~s2s8!
1

uCasinhuCa

3sinh@ us2s8uuCa#sinh@ inf~s,s8!uCa#

3sinh$@12sup~s,s8!#uCa%. ~48!

@In fact Eq. ~48! will not be used in the following.# In the
limit of weak coupling with the magnetic field, Eqs.~47!
does tend to the free motion expression~46! and Eq.~48!
becomes covxy

a (s,s8;B050)50, as it should.
According to Eqs.~32!, ~38!, and~41!, the first term in the

r expansion ofra,p
$p% (Xp) reads

ra,p
$p% ~Xp!5za,p

$p% ~Xp! ~49!

with

za,p
$p% ~Xp!5ra

p
ha

p21

p

sinh~p@2Sa11#uSa!

$sinh~@2Sa11#uSa!%p

~sinhuSa!p

sinh~puSa!

3S sinhuCa

uCa
D p

expF ie

2\c
B0•E

0

p

Xp~t!

`dXp~t!Gexp@2bEb
int~Xp!#. ~50!

D. Effects of exchange and interactions

1. Double-stepped scheme

The low-density expansions are performed in two ste
The first step will be called loop-density expansion and
noted byr loop expansion. The integrals corresponding to t
Mayer diagrams with weightr(L) are expanded in terms o
powers ofr(L) and k. Indeed,k is the only length scale
through which the Mayer bonds depend on the densities
k vanishes with the densities. The order in loop density w
be denoted byr loop

n and we use the convention that ea
length scalek defined in Eq.~34! gives a contribution that
starts at orderr loop

1/2 . Thus n may take half-integer values
The diagrammatic survey and the scaling analysis perform
in Sec. III will show that

r~L!5za,p~Xp ;bma!exp@Jloop
$1/2%~pea!

1Ja, loop
$1% ~Xp!1Ja, loop

$3/2% ~Xp!#, ~51!

where Ja, loop
$n% (Xp) is of order r loop

n . In the following, the
quantities denoted byf loop

$n% (Xp) will always refer to quanti-
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ties that are exactly of orderr loop
n and which are not inte-

grated over the shapeXp of the loop.
In the second step, we turn to the expansions in term

kD and of the quantum particle densitiesra . For that pur-
pose, ra /ra

id!,MB and k are expanded around their low
degeneracy values 1 andkD , respectively, in terms of the
rg’s; simultaneously the loop densities, namely t
za,p(Xp)’s and theJa, loop

$n% (Xp)’s, are expanded in powers o
the particle densitiesrg . When the term of order
@exp(bma)#p in r is known, we can calculatera,p8(Xp8),
with 1<p8<p11 up to orderrp11. Indeed,ra,p8(Xp) con-
tains the multiplicative factorza,p8(Xp) that starts at orde

rp8 by a term ra,p8
$p8% (Xp8) that is exactly known and the

J(Xp8) have to be calculated only up to orderrp112p8,
which is lower than or equal torp. As shown below, we ge

(
n51

`

Ja, loop
$n/2% ~Xp!5 (

n51

`

Ja
$n/2%~Xp!, ~52!

where f $n/2% is a term of orderrn/2, and

za,p~Xp ;bma!5ra,p
$p% ~Xp!1 (

n50

`

za,p
$p111n/2%~Xp!. ~53!

ra,p
$p% (Xp) is given by Eq.~50!. In Eq. ~53! the jump in pow-

ers from rp to rp11 is determined by the fact thatra

5ra
id!,MB1O(r2), as proved just below.

We notice that the summation over the species indi
and the exchange degeneracyp do not increase the order i
r(L) and k of a given diagram. These summations may
most cancel some contributions, in which case they may
crease the order in the loop density~as already discussed i
Sec. III B of Ref.@3#!.

2. Useful property

A property that simplifies explicit calculations ofr ex-
pansions is the following. As shown in Sec. V B, the on
contribution of orderr loop

1/2 in J(La) reads

Ja, loop
$1/2% ~pea!5

1

2
b~pea!2k ~54!

and is independent fromXa . According to Eq.~37!,

J$1/2%~pea!5
1

2
b~pea!2kD , ~55!

which is the value ofJa, loop
$1/2% (pea) whenk is replaced bykD .

3. Starting point of the recurrence scheme

The recurrence scheme may be started as follows.
fact thatJ$1/2%(ea) is independent fromj implies that

D~j!ra,1~j!5raDB0
~j!1O~r2!. ~56!

Indeed, we first notice that Eqs.~32! and ~41! and the nor-
malization~44! imply the relation
of

s

t
-

he

D~j!za,1~j!

ra
id!,MB

5DB0
~j!. ~57!

Thus, according to Eq.~30!, the contribution tora /ra
id!,MB

from the loops withp51, for which Eb
int(j)50, is the inte-

gral of

D~j!ra,1~j!

ra
id!,MB

5eJ$1/2%~ea!DB0
~j!e[Ja

$1%~j!1Ja
$3/2%~j!]1O~r2!,

~58!

where we have used Eqs.~36! and ~37!. Since the low-
density expansion ofra,p(X) starts at orderra

p , Eqs. ~30!
and ~58! lead to

ra5ra
id!,MBeJ$1/2%~ea!1O~r2!. ~59!

Equation~56! is derived from Eqs.~58! and~59!, while Eqs.
~55! and ~59! imply that

ra5ra
id!,MBF11

b

2
ea

2kDG1O~r2!. ~60!

On one hand,ra,2(X2) may be calculated readily up t
orderr5/2 according to Eqs.~50! and ~51! and to the simple
form of J$1/2%(pea), and we get

ra,2~X2!5ra
2 1

2
@11bea

2kD#Eexch,a* ~X2!1O~r3!, ~61!

with

Eexch,a* ~X2![ha

tanhuSa

tanh~@2Sa11#uSa!S sinhuCa

uCa
D 2

3e~ ie/2\c!B0• E0
2X2~t!`dX2~t!e2bEb

int
~X2!.

~62!

Indeed, by combining of Eqs.~50!, ~51!, and~59!, we get

ra,2~X2!

ra
id!,MB

5
1

2
raeJ$1/2%~2ea!2J$1/2%~ea!Eexch,a* ~X2!1O~r2!.

~63!

According to Eqs.~30!, ~55! and~63!, the contribution from
loops withp52 to ra /ra

id!,MB reads

2E D~X2!ra,2~X2!

ra
id!,MB

5raF11
3

2
bea

2kDGEa* 1O~r2!.

~64!

We have setEa* [*D(X2)Eexch,a* (X2) wherer is the relative
position of the particles in the loop.Ea* involves

E D~X2!e~ iea/2\c!B0•E
0

2

X2~t!`dX2~t!e2bEb
int

~X2!

5E dr ~2pla
2 !3^r ,0ue2bHaau0,r &, ~65!
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where Hag is the two-body Hamiltonian without the spi
contribution defined in Eq.~19!. In Eq.~65! we could choose
r150 and r25r , because the left-hand side of Eq.~65! is
invariant under translation of the loop position. The righ
hand side of Eq.~65! may be reexpressed in terms of a on
body Hamiltonian thanks to Eq.~21!.

On the other hand,ra,1(j) may be calculated up to orde
r5/2. Indeed,Jloop,a

$1% (j)1Ja
$3/2%(j) can be expressed explicitl

in terms of the densitiesrg by using Eq.~56! and the equa-
tion

k5kD12pb(
a

ea
2

ra
2

kD
Ea* 1O~r2!. ~66!

Equation~66! is derived from Eqs.~34! and ~61!.

E. Formal results up to order r5/2

1. Free energy

A straightforward low-density expansion implies that, a
ter expansion of the exponential in the generalization of E
~58! and ~63!, an integration over the loop shapes gives

ra

ra
id!,MB

5 (
p51

`

(
n50

`

Ap
$p211n/2%~ea!, ~67!

where the indexp refers to the integrals*D(Xp) . . . where
Ap

$q% comes from; for instance,A1
$1/2%5J$1/2%(ea), A1

$1%

5*DB0
(j)J(1)(j), A1

$3/2%5*DB0
(j)Ja

(3/2)(j), A2
$1%5raEa* ,

and A2
$3/2%5@J$1/2%(2ea)2J$1/2%(ea)#raEa* where Ea* is de-

fined in Eq.~64!. A reexponentiation of the expansion~67!
leads to

lnS ra

ra
id!,MBD 5 (

n51

`

Ba
$n/2% , ~68!

where Ba
$1/2%5A1

$1/2% , Ba
$1%5A1

$1%1A2
$1% , and Ba

$3/2%5A1
$3/2%

1A2
$3/2%2A1

$1/2%A2
$1% . More explicitly,

Ba
$1/2%5J$1/2%~ea!, ~69a!

Ba
$1%5E DB0

~j!J$1%~j!1raEa* , ~69b!

Ba
$3/2%5E DB0

~j!Ja
$3/2%~j!

1ra@J$1/2%~2ea!22J$1/2%~ea!#Ea* . ~69c!

As a consequence, in order to calculate the free-ene
density up to orderr5/2, we have to compute the loop densi
only up to orderr3/2 for p51, while the contribution from
loops with p52 has already been taken into account up
orderr3/2. The scaling analysis of diagrams in terms of t
loop density is presented in Sec. IV and the low-density
pansions themselves are given in Sec. V.

We already notice that the terms of orderr1/2 andr con-
tain obvious partial derivatives with respect tora . Accord-
ing to Eqs.~69a! and ~55! the term
-
-

s.

gy

o

-

Ba
$1/2%5

1

2
bea

2kD5
]

]ra
S kD

3

12p D ~70!

is the opposite of the derivative of the Debye free ener
Moreover, at orderr the contribution to ln(ra /ra

id!,MB) from
exchange effects given by Eq.~69b! is also a partial deriva-
tive by itself,

Bexch,a
$1% 5raEa* 5

]

]ra
S 1

2(g
rg

2Eg* D . ~71!

2. Loop density

The r expansion of the loop densitiesra,p(Xp) will be
useful in the discussion of Paper III. By inversion of E
~68!, ra

id!,MB may be expressed in terms of therg’s, and
insertion of this expansion in Eqs.~58! and ~63! leads to

D~j!ra,1~j!5raDB0
~j!H11Ja

~1!~j!2E DB0
~j8!Ja

~1!~j8!

2raEa* 1Ja
~3/2!~j!2E DB0

~j8!Ja
~3/2!~j8!

2rabea
2kDEa* J 1O~r3! ~72!

while ra,2(X2) is given up to orderr5/2 by Eq. ~61!.

IV. SCALING ANALYSIS IN LOOP DENSITY

A. Formal scale decomposition

Since the bonds introduced in Paper I depend on the d
sity, a scale decomposition is introduced in order to de
mine to which orders inr(L) and k a given diagram con-
tributes. Similar principles are used in the decomposit
chosen in Sec. V D of Ref.@2#.

We first notice that in the simple diagrams which we w
have to consider, all terms that involve an odd number
derivatives with respect tor disappear after integration ove
X. Indeed, every such term originates from a large-dista
expansion of a functionf , and it takes the formg(X)@X#m1

•••@X#mn
]m1 , . . . ,mn

f (r ) whereg(X) is invariant under rota-

tions of X ~while ]m1m2
denotes a derivative with respect

the components@r #m1
and @r #m2

). Since the weight

D(X)r(X) is invariant under inversion ofX and is short
ranged with respect to the extent ofuXu, the integration over
X may be performed first and terms with an odd number
components ofX are canceled. Thus terms with an odd nu
ber of derivatives vanish in the absence as well as in
presence of the magnetic field.

1. Bonds entirely scaled byk

For bondsF, such asFcc andFcm, that are entirely scaled
by k, the scale decomposition takes the very simple form

F~r ;k!5 (
n50

`

F ^n&~r ;k! ~73!

with
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F ^n&~r ;k![knF̃ ^n&~r /k!. ~74!

The dependence on the chargesei and ej will not be men-
tioned in the argument of the bonds. In the case ofFcc, only
one power ofk is involved,

Fcc~r5x/k;k!5kFcc̃~x!, ~75!

with Fcc̃(x)52b i j exp(2x)/x andb i j [beiej .
In the case ofFcm, there appears a series in powers ofk.

This series is derived from the Taylor expansionET@Fcm# of
Fcm at large distances, though it does not coincide with t
expansion, as explained in the following. A term in the Ta
lor expansion ofFcm(r ,X j ) is denoted by

Tcm^n&~r ,X j !5b i j E
0

p

dt@X j~t!•“#n21f~r ;k!, ~76!

with n>2 and

f~r ;k!5
e2kr

r
. ~77!

Tcm^n& is entirely scaled by thenth power ofk and

ET@Fcm~r5x/k,X j ;k!#5 (
n52

`

knT̃cm^n&~x,X j !. ~78!

For instance,

T̃cm^2&~x,X j ![b i j E
0

p

dt X j~t!•“xS e2x

x D
5b i j E

0

p

dt X j~t!• x̂F2
e2x

x
2

e2x

x2 G , ~79!

where x̂ is the unit vectorx̂[x/x. More generally the term
Tcm^n& is a sum ofn contributions each of which decays a
exp(2Apkr)/rp whereAp is a constant and 1<p<n. In the
Taylor expansion theTcm^n&’s with n>3 are not integrable a
the origin. Henceforth, the termF̃cm^n&(x,X j ) in the scale
decomposition does not coincide with the termTcm^n& in the
Taylor expansion ofFcm,

Fcm~r5x/k,X j ;k!5 (
n52

`

knF̃cm^n&~x,X j !, ~80!

with F̃cm^n&5” T̃cm^n&. The problems arising from the nonin
tegrability of Tcm^n& at short distances can be solved by
regularization procedure in Fourier space, but the latter is
beyond the scope and need of the present paper.

Indeed, in the following, we will use the property that,
g(r ) is a function invariant under rotations and is regular
the origin

E dx g~ uxu!F̃cm^n&~x,X j !5E dx g~ uxu!T̃cm^n&~x,X j !.

~81!
s
-

ar

t

Equation~81! holds thoughF̃cm^n&(x,X j )5” T̃cm^n&(x,X j ) be-
cause*dx g(uxu)T̃cm^n&(x,X j ) is integrable at the origin. The
reason relies on two facts: eachTcm^n& involves derivatives
of ordern21 of the functionf(r ;k), and it is multiplied by
functions that are invariant under rotations ofr . Let us con-
sider the integral ofg times any partial derivative of a func
tion f , where bothf andg are invariant under rotations. Afte
integration over the orientation ofr , any partial derivative of
f with an odd number of coordinates gives a vanishing c
tribution, whereas the derivative of order 2p gives a term
which is proportional toDpf times a tensor of rank 2p. ~This
result can be easily derived in Fourier space.! For instance, a
fundamental relation used in the following is

E dr g~ ur u!]mn f ~ ur u!5dm,n

1

3E dr g~ ur u!D f ~ ur u!.

~82!

Moreover,f obeys the equation

Df2k2f524pd~r ! ~83!

and, subsequently, it can be shown by recurrence thatDpf is
integrable at the origin. Thus*dx g(uxu)Tcm^2p&(x,X j ) in-
volves in fact onlygDpf, which is integrable at the origin
even in the presence of the magnetic field.

2. Bond FR

In the case of the bondFR three kinds of scale lengths ar
involved: the lengthsbueaegu that measure the coupling wit
the Coulomb potential and, for each species, the radius of
orbits in the first Landau levell Ca5A2\c/eaB0 and the
thermal de Broglie wavelengthla . Thus, after integration
over r , the corresponding truncated two-body density-mat
element depends on at most three kinds of dimension
parameters beaeg /Alalg, la

2/ l Ca
2 5b\vCa/25uCa ,

lg
2/ l Cg

2 5uCg , andla /lg5Amg /ma. We notice that, when
ea /ma5eg /mg , the motion equations can be decoupled
two independent equations for the motions of the cente
mass and a relative particle, respectively; thenuCa5uCg .

On the other hand, the large-distance Taylor expansio
FR reads

FR~r ;k!5 (
n52

`

TR
^n&~r ;k!. ~84!

The first term

TR
^2&~r ;k!5

1

2
@Fcc~r ;k!#25

b i j
2

2
f2~r ;k! ~85!

is integrable at short distances, whereas the higher-o
terms in the Taylor expansion are not. In the following w
will consider separately@Fcc#2/2, because@Fcc#2/2 decays
only as 1/r 2 at k50 and is integrable at large distances f
any finitek, while it is integrable at short distances for an
k. We define the truncated resummed bond

FRT[FR2TR
~2! . ~86!
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The diagramsP are then replaced by diagramsPT which are
built as the diagramsP ~namely, with the same topologica
rules but! with the only difference that there are now fiv
bondsFcc, Fcm, Fmc, FRT , and@Fcc#2/2.

FRT decays as 1/r 3 at k50 and is conditionally conver
gent for any finitek when integrations over angles are pe
formed in the first place. As a consequence, the low-den
expansion of*drFRT(r ,X i ,X j ) starts by a singular lnk term
whenk goes to zero, as detailed in the next section. Let
denote the low-density expansion of a functionF by
ELD@F#. The fundamental formula that allows one to pr
duce a scale decomposition of the Fourier transform
FRT , FRT(k;k)[*drexp@ik•r #FRT(r ;k), reads

ELDF E dr eik•rF~r !G5 lim
R→`

H E
r ,R

drELD@F~r !eik•r#

1ELDF E
r .R

drFas~r ! eik•rG J ,

~87!

whereFas is the part of the asymptotic behavior ofF that
gives nonvanishing contributions to

E
r .R

drFas~r !exp~ ik•r !

when R goes to infinity.~We notice that the notationR for
the parameter that goes to infinity has nothing to do with
subscriptR in FRT .) SinceTR

^n& denotes the term with (n
21) derivatives with respect tor in the Taylor expansion o
FRT at large distancesr @see Eq.~76!#, TR

^n& is a sum of
contributions entirely scaled bykn. According to Eq.~87!,

ELD@FRT~kq;k!#

5 lim
R→`

H E
r ,R

dr ELD@FRT~r !eikq•r#

1E
x.kR

dx T̃R
^3&alg~x!eiq•x

1 (
n53

`

kn23ELD F E
x.kR

dx T̃R
^n&exp~x!eiq•xG J ,

~88!

where we have omitted the dependence on the loop sha
because it does not play any role in the formula. In Eq.~88!

T̃R
^3&alg denotes the purely algebraic part ofT̃R

^3& , T̃R
^3&alg

5W3 , while T̃R
^n&exp denotes the part ofTR

^n& that decays ex-

ponentially at large distances. TheT̃R
^n&exp are not integrable

at the origin, but it does not matter because they appear
at distancesr .R. T̃R

^n&alg with n>4 do not appear in the
right-hand side of Eq.~88!, because their contribution van
ishes whenR goes to infinity. On the contrary the contribu
tion from the T̃R

^n&exp lead to expansions in powers o

km(kR)m8.
ty

s

f

e

es,

ly

For instance,*x.kRdxexp(iq•x)exp(23x)/x3 arises in the
contribution ofT̃R

^3&exp; this integral can be expanded in pos
tive powers ofkR and includes a ln(kR) term. Indeed,

E
x.kR

dx
e23x

x3
eiq•x5A~3kR!1E dx

e23x

x3
@eiq•x21#

2E
r ,R

dr
e23kr

r 3
@eikq–r21#, ~89!

where

A~nkR![E
x.kR

dx
e2nx

x3
~90!

and ~see, for instance, page 956 of Ref.@13#!

ELD@A~nkR!#5A~0!~nkR!1knE
r ,R

dr
1

r 2

2k2
n2

2 E
r ,R

dr
1

r
1O„~kR!3

…, ~91!

where A(0)(nkR)524p@C1 ln(nkR)# and C is the Euler
constant.The lnk terms in the low-density expansion o
*drFRT arise from theA(0)(nkR)’s. Moreover, the second
term in the right-hand side of Eq.~89! reads

E dx
e23x

x3
@eiq•x21#

524pF lnSA91q2

3 D 1
3

q
arctanS q

3D21G .
~92!

The integral in the third term in the right-hand side term
Eq. ~89! is convergent at the origin and its low-density e
pansion is merely obtained by expanding the integrand
powers ofk. This procedure generates a series in powers
qkR that starts at orderO(q2k2R2). Another example of
contributions arising fromT̃R

^4&exp is the contribution from
f4. After an integration by parts,

kE
x.kR

dx
e24x

x4
54p

e24kR

R
24kA~4kR!. ~93!

The corresponding low-density expansion reads

ELDFkE
x.kR

dx
e24x

x4 G5
4p

R
216pk24kA~0!~4kR!

1O~k2R!, ~94!

where the first term vanishes whenR goes to infinity.

B. Explicit value of the scale decomposition ofF RT

In the following, after determination of the diagrams th
contribute to the first three orders in density,FRT will only
appear in convolutions. Thus the calculations will be p
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formed in Fourier space, and we give only the explicit va
of the low-density expansions involving the Fourier tran
form of FRT .

1. Short-ranged contributions

The expressions of@Fcc#2/2 andFR given in Sec. IV A of
Paper I are expanded in powers ofk for a fixed r with the
result

ELD@FRT#~r ,X i ,X j !5 f T1b i j @vmc1vcm#

1kpipjb i j F f T1
~b i j pipj !

2

2r 2 G
1O~k2!, ~95!

with f T defined as

f T~r ,X i ,X j !5e2b i j v~r ,Xi ,X j !211
b i j pipj

r
2

~b i j pipj !
2

2r 2
.

~96!

f T is integrable at the origin and decays as 1/r 3 at large
distances. So its contribution to* r ,R••• behaves as lnR and
is compensated by the ln(kR) that comes from*dr TR

^3&exp.
The second term in Eq.~95! is the so-called diffraction term
which is specific to the long range of the Coulomb potent

E
r ,R

dr b i j v
cm~r ,X j !

5b i j

1

2E0

p

dt @X j~t!#m
2 E

r ,R
dr]mmS 1

r D . ~97!

In Eq. ~97! we have only written the first term coming from
the large-distance Taylor expansion ofvcm. Indeed, after in-
tegration over the orientation ofr , the next terms involve
only the functionsDp(1/r ) or @]2n/(]z)2n#Dp2n(1/r ), with
p.n, or @]2p/(]z)2p#(1/r ), with p>2. The first two expres-
sions are equal to derivatives of the Dirac distribution, a
their integrals vanish, while the third function is proportion
to the Legendre polynomialP2p(cosu) and gives a zero con
tribution after integration over the angleu between thez axis
and r ~see Sec. V C of Paper I!.

For loops withp51, X15laj and Eq.~97! involves the
covariance defined in Eq.~45! with the result

E
r ,R

dr H S E
0

1

dscovxx
a ~s,s;B0! D @]xx1]yy#S 1

r D
1S E

0

1

dscovzz~s,s! D ]zzS 1

r D J
524pFC01

2

3
dC~uCa

!G , ~98!

where we have used Eq.~82! with g(r )51 and f (r )51/r
together with the identity* r ,RdrD(1/r )524p. In Eq. ~98!
C0 denotes the integrated covariance in the absence of m
netic field,
e
-

l,

d
l

g-

C0[E
0

1

dscov xx~s,s;B050!5
1

6
. ~99!

Since covzz(s,s)5cov xx
a (s,s;B050)

dC~uCa
![E

0

1

ds@cov xx
a ~s,s;B0!2cov xx

a ~s,s;B050!#

5
1

2uCa

L ~3!~uCa
!, ~100!

where L [3] (x)5cothx2(1/x)2(x/3) is a generalization of
the Langevin functionL(x) defined in Eq.~14!. Finally, the
diffraction contribution from*drFRT given by Eq. ~97!
reads

E
r ,R

drE DB0
~jj !b i j v

cm~r ,jj !

52b i j 2pla j

2 FC01
2

3
dC~uCa j

!G , ~101!

where

C01
2

3
dC~uCa

!5
1

6F11
2

uCa

L [3]~uCa
!G . ~102!

2. Long-ranged contributions

At the orders of interest we have to consider only t
contributions fromT̃R

^3&alg5W3 , TR
^3&exp, andTR

^4&exp to inte-
grals of the form

E
x.kR

dx E D~X i !D~X j !gi~X i !gj~X j !F~x,X i ,X j !e
iq•x,

~103!

where the weightsD(X i)gi(X i) are invariant under inversion
of X j .

SinceW3(r ,X i ,X j ) is odd under inversion of each loo
shape, the contribution fromW3 to an integral~103! vanishes
according to parity arguments. When we consider the c
q50, another argument can be used. Indeed, after inte
tion over the orientations ofr , W3 gives a term proportiona
to D(1/r ), which is short ranged, so that* r .Rdr W350.

The exponential part of the large-distance Taylor exp
sion of FRT can be written for then53 and 4 terms as

TR
^3&exp52b i j @felect

^3& 2felect
cm^3&2felect

mĉ 3&#1b i j
2 f felect

^2& 2
b i j

3

3!
f3

~104!

and

TR
^4&exp52b i j @felect

^4& 2felect
cm^4&2felect

mĉ 4&#

1b i j
2 F1

2
~felect

^2& !21ffelect
^3& G2

b i j
3

2
f2felect

^2& 1
b i j

4

4!
f4.

~105!
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2b i j felect
^n& and 2b i j felect

cm^n& are thenth-order terms in the
large-distance Taylor expansion of2b i j felect andFcm with
the notations of Sec. IV A in Paper I.felect

^3& 2felect
cm^3&

2felect
mĉ 3& involves a product@X i #m@X j #n , while felect

^2& and the
felect

^4& ’s contain odd numbers of components of eitherX i or
X j . Thus, after integration over the loop shapes with weig
that are invariant under inversion ofX, only the term pro-
portional to f3 in TR

^3&exp(x) does contribute to Eq.~103!
~and it has already been computed in Sec. IV A!, while only
(felect

^2& )2, ffelect
^3& , andf4 in TR

^4&exp give nonvanishing con-
tributions to Eq. ~103!. After integration over the loop
shapes, the contribution from the term (felect

^2& )2 is propor-
tional to

E
x.kR

dxF“S e2x

x D G2

52pe22kR14p
e22kR

kR

5
4p

kR
26p1O~kR! ~106!

while the contribution from the termffelect
^3& involves

E
x.kR

dx
e2x

x
DS e2x

x D52pe22kR52p1O~kR!.

~107!

The contribution fromf4 has already been given in Eq.~94!.

3. Relevant results

By collecting the previous results we get at orderk0

E DB0
~ji !E DB0

~jj !FRT~kq;ji ,jj !

5Qa ia j
* ~3k!22pb i j H la i

2 FC01
2

3
dC~uCa i

!G
1la j

2 FC01
2

3
dC~uCa j

!G J
2

b i j
3

3! E dx
e23x

x3
@eiq•x21#1O~k!, ~108!

where the last integral is given in Eq.~92! and

Qa ia j
* ~nk![ lim

R→`
H E

r ,R
drE DB0

~ji !E DB0
~jj ! f T

2
b i j

3

3!
A~0!~nkR!J . ~109!

Qa ia j
* (nk) may be written in terms of matrix elements b

using the Feynman-Kac-Itoˆ formula given in Sec. III of Pa-
per I. According to the value ofA(0)(nkR) given in Eq.~91!,
s

Qa ia j
* ~nk!5 lim

R→`
H E

r ,R
drF sinhuCa i

uCa i

sinhuCg j

uCg j

3~2pla i
la j

!3^0,r ue2bHa ia ju0,r &21

1
bea i

ea j

r
2

~bea i
ea j

!2

2r 2 G
1

2p

3
~bea i

ea j
!3@C1 ln~nkR!#J , ~110!

whereHa ia j
has been defined in Eq.~19!.

Moreover, we shall need the following expression up
orderk:

E drE DB0
~ji !E DB0

~jj !FRT~r ,ji ,jj ;k!

5Qa ia j
* ~3k!1kb i j Qa ia j

* ~4k!2S 2pb i j 1k
p

2
b i j

2 D
3H la i

2 FC01
2

3
dC~uCa i

!G1la j

2 FC01
2

3
dC~uCa j

!G J
2k

2

3
pb i j

4 1O~k2!. ~111!

When we expandk in powers ofkD , expressions~108! and
~111! remain unchanged apart from the replacement ofk by
kD at the considered orders. Thus according to Eq.~111! the
low-density expansion of

E drE DB0
~ji !E DB0

~jj !FRT~r ,ji ,jj ;k!

does start by a logarithmic term which is equal
(2p/3)(beaea j

)3ln(3k). The next term is a constant plus

rest of orderk.

C. Minimal order of diagrams in loop density

The minimal order in density to which a diagramPT
introduced in Sec. IV A contributes can be determined by
following procedure. We recall that the powerskn are
counted as powersr loop

n/2 . The problem to be handled is tha
the bondsFcc, Fcm, and@Fcc#2/2 are entirely scaled byk,
whereas the bondFRT is at the border of integrability and
decays as 1/r 3 over a length scale which does not depend
the density @see Eq. ~88!#. For instance,
limk→0*drFRT(r ,ji ,jj ) is independent fromk apart from a
lnk term. LetN be the number of internal points in the dia
gram. LetMFRT

(MFcm) be the number of bondsFRT (Fcm

or Fmc) andMFcc be the number of functionsFcc contained
in the bondsFcc and@Fcc#2/2. The integral corresponding t
a given diagram is proportional to

E F)
i 51

N

dr idx ir~x i !G )
bonds

F~Li ,Lj !. ~112!
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For the sake of pedagogy, let us first consider the c
MFRT

50. Then all bonds are entirely scaled byk and the

scaling changer5x/k is performed for the position of ever
internal point of the diagram. Each integration volumedr i
gives a factork23 and is associated with a weightr(L) that
starts at the orderk2. Each bondFcc (@Fcc#2/2) leads to a
factor k (k2) and, according to Eq.~80!, each bondFcm

gives rise to a series in powers ofk, the first term of which
is of orderk2 and may vanish after integration over the o
entation ofr or over the loop shapes. Thus, sincek is con-
sidered as a term that starts at orderr loop

1/2 , the first term in the
r loop expansion of Eq.~112! is of orderr loop

n with

n~MFRT
50!>2

N

2
1

1

2
MFcc1MFmc. ~113!

We recall that the summations over the species or the
change degeneracies or the integration over the loop sh
may only increase the order inr loop. We notice that, since
any diagram in Eq.~112! is connected and without any~in-
ternal or root! articulation point~see Sec. III C of Paper I! the
number of bonds is greater thanN11 the total number of
points in the diagram. Since the number of bonds is a
lower than MFcc1MFmc, MFcc1MFmc>N11, and
n(MFRT

50)>1/2.

In the generic caseMFRT
5” 0. The integration over the

distance between two points that are directly linked by
bond FRT ~and possibly indirectly linked by other paths
bonds! leads to a finite value whose limit whenk goes to
zero is independent from the density, up to lnk terms, be-
cause the distances that mainly contribute to the integ
involving FRT are within a rangel 0 which is independen
from the density. So, as a first step, we integrate over
relative distances between pairs of points directly linked b
bond FRT . We call r j

(1) the positions of the internal point
L j

(1) that are left over after this first integration. Since on
regions contained in a ‘‘contraction disk’’ with a radiusl 0
and centered around either the positionra of La or around
the r j

(1)’s ( j 51, . . . ,Ndisk
(1) 21) do contribute to the integra

~112!, the first integration step can be represented by a
grammatical process. In this process, similar to that use
Sec. III of Ref.@3#, every pair of points that are linked by
bondFRT is replaced by a single point.~The latter is any one
of the two points in the pair when they both are intern
points, whereas the root point is chosen as the single p
resulting from the collapse when it is involved in the bo

FIG. 1. Diagrams that contribute from orderr1/2 to
ln(ra /ra

id!,MB). In Fig. 1, as in the following figures, a white dis
represents the root pointLa and a black disk denotes an intern
point whose loop coordinates are integrated over.I rgT is the contri-
bution of orderr1/2 from the ‘‘ring’’ diagrams which is given in
Sec. V B. A wavy line corresponds to a bondFcc and the symmetry
factor of diagrams is not recalled in the figures; neither is the we
r(x) of every internal point. Thus the second diagram in Fig
stands for (1/2)*dr*dxr(x)@Fcc(r ,xa ,x)#2.
se

x-
es

o

a

ls

ll
a

a-
in

l
int

FRT .) The contraction process of the first step ends wh
there is no moreFRT bond. A given contraction disk may
originate from the fusion of several points that are link
together in the original diagrams by bondsFRT and other
kinds of bonds. Sincel 0 does not depend on the density,k21

is far greater thanl 0 in the low-density limit, so that, in the
integral ~112!, the bondsFcc andFcm inside every contrac-
tion disk can be replaced by their values whenk vanishes
and the result from the integration over all variables ins
the contraction disks, except their centersL j

(1) , is indepen-
dent from the density. Consequently, at the lowest orde
density, the integrations over theN2(Ndisk

(1) 21) internal
points of the original diagram that are not centersr j

(1) of
contraction disks lead to a contribution of ord

r
loop
N2(Ndisk

(1)
21)

. Moreover, at the first order in loop density

each argument in any bond is replaced by the variableL j
(1)

which is in the same contraction disk~or byLa in the case of
an argument which is in the contraction disk centered on
root point!. Thus ther loop expansion of the integral~112!

starts by a contribution of orderr
loop
N2(Ndisk

(1)
21)

times,

E F )
j 51

Ndisk
~1!

21

dr j
~1!dx jr~x j !G

3 )
bonds disks/disks

Fdisk/disk
~1! ~Li

~1! ,L j
~1!!. ~114!

In Eq. ~114! the bondsFdisk/disk
(1) between the centers of th

contraction disks are products of bondsFcc andFcm. Some
of these bonds decay at least as 1/r 3 over a lengthl 0!k21

whenk vanishes.
Consequently, a second step is needed in the contrac

procedure. Indeed, if we made the scaling transforma

t

FIG. 2. Diagram with a single bondFRT . This diagram contrib-
utes from orderr to ln(ra /ra

id!,MB).

FIG. 3. Diagram which completes the direct contribution of o
der r from Fig. 2. in order to write it as a single partial derivativ
with ra .
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r j
(1)5kxj

(1) at once, then the integration overr of any bond
that decays as exp@2Akr#/rmj with mj>3 would lead to a
contributionkmj 23 with mj23>0, whereas its low-density
limit is in fact of orderk0 because it decays at least as 1r 3

whenk vanishes. So, in order to obtain the lowest order
density, we have to perform a second step in which we in
grate over the bondsFdisk/disk

(1) that decay at least as 1/r 3 at
k50. This procedure is equivalent to introducingNdisk

(2) new
contraction disks. The integration over the@Ndisk

(1) 21#
2@Ndisk

(2) 21# internal points of these disks except their ce

ters gives a contribution that starts at orderr
loop
Ndisk

(1)
2Ndisk

(2)

. Thus
the r loop expansion of the integral~114! starts by the latter
contribution times an integral that can be written as Eq.~114!
with a superscript (2) in place of(1). Thecontraction pro-
cess is repeated until there remain only bonds between d
that decay as 1/r or 1/r 2 at k50. Let Ndisk,irr be the number
of irreducible disks at the end of the contraction procedu
The r loop expansion of the integral~112! starts by a term of
order r loop

N2(Ndisk,irr21) times an integral similar to Eq.~114!
where the bondsFdisk/disk

(irr) are only single bondsFcc, @Fcc#2

or Fcm. As discussed above in the caseMFRT
50, the change

of variabler5x/k for the (Ndisk, irr21) positions of the cen-
ters which are to be integrated over shows that the la
integral is of order r loop

n! with n!52(1/2)(Ndisk,irr21)
1(1/2)MFcc, irr1MFmc, irr , where MFcc, irr (MFcm, irr) is the
number of bondsFcc (Fcm or Fmc) between the irreducible
disks. Eventually the term of lowest order in ther loop expan-
sion of the contribution of the diagram is of order

n~MFRT
!>N2

3

2
~Ndisk,irr21!1

1

2
MFcc, irr1MFcm, irr .

~115!

FIG. 4. Diagram which completes the direct contribution of o
derr3/2 from Fig. 2. in order to write it as a single partial derivativ
with ra .

FIG. 5. Classical diagrams whose sum gives a contribution
orderr3/2 exactly and is a partial derivative with respect tora of a
term proportional to (1/kD)((grgeg

3)2((g8rg8eg8
4 ).
-

-

ks

.

er

We notice that, ifMFRT
50, there is no contraction proces

Ndisk,irr5N11, and we retrieve Eq.~113!. If MFRT
>1, the

number of disks is lower than the total number of pointsN
11 in the original diagram minus one,N>Ndisk,irr . More-
over, since the diagram made with irreducible disks is s
connected, the number of bonds is greater thanNdisk,irr21;
since it is lower thanMFcc, irr1MFcm, irr , we get MFcc, irr
1MFcm, irr>Ndisk,irr21. Subsequently, the lower bound
Eq. ~115! is greater than or equal to 11(MFcm/2)>1. If the
diagram is sufficiently connected withFRT bonds—and there
is no criterion aboutMFRT

for this phenomenon, contrary t
what was said in Sec. III C of Ref.@3#—then all disks col-
lapse into a single one and, according to Eq.~115! with
Ndisk,irr51 andMFcc5MFcm50, the order in density may be
equal tor(L)N as in the case of short-ranged interactions

V. EXPLICIT CONTRIBUTIONS FROM DIAGRAMS

We recall that, according to Sec. III C of Paper I,J(La) is
the sum of a constantI rgT ~coming from some truncated con
tribution of Coulomb rings! and of all unlabeled topologi-
cally different connected diagramsP* with one root pointLa
and at least one internal point, and which are built w
bondsFcc, Fcm, Fmc, and FR . The topological rules for
these diagrams are the following. They contain no articu
tion point, they remain as a single piece when all bon
involving the root point are cut, and they obey the followin
excluded-convolution rule: there can be no convoluti
Fcc* Fcc, Fcc* Fcm, or Fmc* Fcc.

Diagrams that should contribute from one given order
density according to the scaling analysis but that prove
vanish after integration over the shape of the root pointXa
will not be drawn. In Figs. 1–7 diagrams are put togeth
according to the minimal order in density to which they co
tribute and according to the nature of the effects they
scribe. Moreover, diagrams whose sum gives one deriva
with respect to the density are collected in a single figu
The species of the root pointLa will be calleda in order to
simplify the notations.

A. Single bonds with no contribution

The contribution fromFcc to J(Xa) disappears by virtue
of the neutrality relation. Indeed, it reads

E drE dxr~x!Fcc~r ,paea ,peg!52paea

4pb

k2 (
g

egrg .

~116!

f

FIG. 6. Classical diagrams whose sum gives a contribution
orderr3/2 exactly and is a partial derivative with respect tora of a
term proportional to (1/kD

3 )((grgeg
3)4.
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We notice that if the neutrality relation~39! did not cancel
the contribution fromFcc, this contribution would be respon
sible for the existence of a term of orderr0 that would not be
a partial derivative with respect tora . In fact, such a term is
not allowed, because, otherwise,ra would not be equal to
ra

id!,MB in the strict zero-density limit, as explained in Se
III C.

The contribution fromFcm(r ,xa ,x) or Fmc(r ,xa ,x) van-
ishes after integration over the relative positionr of the two
loops,

E drFcm~r ,X!50. ~117!

A first argument can be given in Fourier space. Since
Fourier transform ofFcm reads

Fcm~k,X!52bpaeaegE
0

p

dt~e2 ik•X~t!21!
4p

k21k2

~118!

and is multiplied by a functionr(X) every moment of which
is integrable, its contribution vanishes whenuku goes to zero.
Another reason may be provided in position space. Acco
ing to Sec. IV A,

E drFcm~r ,X!5 (
p51

` E drTcm^2p&~r ,X! ~119!

and the contribution from eachTcm^2p& is proportional to that
from Dp(exp@2kr#/r). Equation~83! and the identity

E dr
exp~2kr !

r
5

4p

k2 ~120!

imply that *drDf(r )50. A recurrence allows one to sho
easily by using Eq.~83! again that, for anyp>1,

E drDpS exp~2kr !

r D50. ~121!

FIG. 7. The sum of these diagrams is analogous to that of
grams in Fig. 6, apart from the fact that in the case of Fig. 6
numerical coefficient involves a one-dimensional integral with
ementary functions, whereas in the case of Fig. 7, the coefficie
a three-dimensional ‘‘bridge’’ integral.
.

e

-

B. Diagrams contributing from the order r1/2 to ln„ra /ra
id!,MB

…

Now we turn to the contributions from orderr loop
1/2 to

ln(ra /ra
id!,MB). We calculateJ(1)loop

$1/2% for any p because we
need its value forp51 andp52, according to Eq.~69a! and
~69c!. After inspection, every diagram, but Fig. 1, proves
be at least of orderr loop. In other words, the term of orderk
that comes from Fig. 1,J(1)loop

$1/2% (paea), is the only contribu-
tion of orderr loop

1/2 to ln@ra,p(Xp)/za,p(Xp)#.
With the same notations as in Eq.~51!, the contribution

J(1)loop
$1/2% of order r loop

1/2 from Fig. 1 is the sum of two contri-
butions. First, after splittingFR into FRT and @Fcc#2/2, the
contribution from the diagram with only one bondFR gives
a term

E drE dxr~x!
1

2
@Fcc#2~r ,paea ,peg!5

1

4
b~paea!2k

~122!

according to the definition ofk recalled just before Eq.~31!.
The other contribution toJloop

$1/2% comes fromI rgT . As ex-
plained in Sec. IV B of Paper I,I rgT contains the sum of rings
of Coulomb bonds plus the value that must be subtrac
from FRT in order to avoid any double counting. The valu
of I rgT is given in Sec. IV B of Paper I. The contribution
from (1/2)@Fcc#2 andI rgT are entirely scaled byk. Ther loop

expansion of their sum starts at orderr loop
1/2 by

J~1!loop
$1/2% ~paea!5

1

2
b~paea!2k. ~123!

I rgT also gives a contribution proportional tok3,

2k3
1

4
b~paea!2H E

0

padt

pa
E

0

padt8

pa

1

3
Xa~t!•Xa~t8!

2E
0

padt

pa

1

3
@Xa~t!#2J ~124!

plus higher-order terms ink2n11 with n>2. The expression
~124! is derived from the property~82! and from

E dxS 12e2x

x D S 1

xD52p, ~125!

E dx ]mS 12e2x

x D ]mS 1

xD52p ~126!

~with implicit summation overm)

E dxH S 1

xDDS 12e2x

x D1S 12e2x

x DDS 1

xD J 524p.

~127!

Since Fig. 1 provides the only contribution of orderr loop
1/2 ,

the only term of orderr1/2 in J(Xa), J$1/2%(paea), is ob-
tained by inserting ther expansion~66! of k aroundkD in

a-
e
-
is
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Jloop(1)
$1/2% (ea) @namely, by replacingk by kD in the value~123!

of J(1)loop
$1/2% (ea)] with the result

J$1/2%~paea!5J~1!
$1/2%~paea!5

1

2
b~paea!2kD . ~128!

By using the fundamental formula that will be used seve
times in the following:

]kD
n

]ra
5n2pbea

2kD
n22 , ~129!

we get

J$1/2%~paea!5pa
2 ]

]ra
S kD

3

12p D . ~130!

For pa51 J$1/2% is the classical Debye contribution. On th
other hand, according to the formal study in Sec. III
J$1/2%(paea) for pa51 is in fact the only contribution at or
der r1/2 in ln(ra /ra

id!,MB), namely,Ba
$1/2%5J$1/2%(ea). Thus

the Debye term is the only contribution of orderr3/2 in the
free energy density and quantum corrections appear on
larger orders.

According to the results of Sec. III E, the next terms in t
r expansion ofJ(La) contribute to ther expansion of
ln(ra /ra

id!,MB) up to orderr3/2 only through*D(j)J$n%(j)
with n51 or n53/2. For the sake of conciseness, we int
duce

I PT

$n%[E D~j!JPT

$n%~j!. ~131!

Figure 1 gives no contribution of orderr, I (1)
$1%50, while

I (1)
$3/2% is the sum of two terms.

One term inI (1)
$3/2% is an exchange term that comes from t

r3/2 term in the expansion ofk aroundkD when it is inserted
in the value~123! of J(1)loop

$1/2% (paea). It reads

I ~1!exch
$3/2% 5pb2ea

2 1

kD
(
g

eg
2rg

2Eg* 5
b

2

]kD

]ra
(
g

eg
2rg

2Eg* .

~132!

After inspection of diagrams, there proves to be no ot
diagram that would give exchange contributions at or
r3/2. The term of orderr has already been identified as
derivative with respect tora in Sec. III E. According to Eq.
~69c!, the exchange termBa

$3/2% in ln(ra /ra
id!,MB) at orderr3/2

is the sum of two contributions. The first on
*DB0

(j)Jexch
$3/2%(j), originates from the termI (1)exch

$3/2% and may

be expressed asf ]g/]ra . The other one comes from th
loopsLa with pa52 and is written in Eq.~69c!. After inser-
tion of the value ofJ$1/2%(pea) in Eq. ~69c!, the latter con-
tribution may be written asg] f /]ra . More precisely,
l

,

at

-

r
r

E D~j!Jexch
$3/2%~j!1ra@J$1/2%~2ea!22J$1/2%~ea!#Ea*

5
]

]ra
S 1

2
bkD(

g
rg

2eg
2Eg* D . ~133!

Equation~133! is the first example of the adequate combin
tion of different kinds of contributions in order to produc
derivatives of products of functions that all depend on
density.

The other term inI (1)
$3/2% arises from the replacement ofk3

in Eq. ~124! for pa51 by its leading low-density valuekD
3 .

It reads

I ~1!diff
$3/2% 52kD

3 1

8
bea

2la
2FC01

2

3
dC~uCa!G

52
b

8
kD

3 ]

]ra
S (

g
FC01

2

3
dC~uCa!Grgeg

2lg
2D .

~134!

In Eq. ~134! we have used the index diff because the lat
term comes fromr expansions of integrals involving th
bondFcm and the existence of the latter bond originates fro
the combination of quantum fluctuations with the resumm
tion of collective effects arising from the long range of th
Coulomb potential. We have already called ‘‘diffraction
contributions the terms in Eq.~111! that have a similar origin
in the r expansion of*drFR(r ,ji ,jj ).

C. Diagrams contributing from order r to ln„ra /ra
id!,MB

…

1. Single bond FRT and first ‘‘direct’’ contributions

The diagram in Fig. 2, which reduces to a single bo
FRT , is responsible for another kind of contributions, call
‘‘direct’’ terms in the following, because they involve th
diagonal matrix element of the two-body Gibbs factor. The
terms contain both short-ranged quantum effects, such as
existence of bound states, and a proper truncation that m
the contributions from Rydberg and diffusive quantum sta
finite, as a consequence of the screening of monopoles w
is valid both at the classical and quantum levels. The dir
terms appear from orderr. The diagram in Fig. 3~Fig. 4!
will allow the completion of the direct contributions ofFRT
~in Fig. 2! in order to obtain derivatives with respect tora of
a term of orderr (r3/2).

The contribution from Fig. 2 to*DB0
(ja)J(ja),

I ~2!5E dr(
g

rgE DB0
~ja!E DB0

~j!FRT~r ,ja ,j!,

~135!

is given by formula~111!. I (2) may be decomposed as

I ~2!5I ~2!dir
$1% 1I ~2!diff

$1% 1I ~2!dir
$3/2% 1I ~2!diff

$3/2% 1o~r3/2!. ~136!

Terms of two kinds emerge at orderr. One is a direct
term,
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I ~2!dir
$1% 5(

g
rgQag* ~3kD!5

]

]ra
S 1

2(
g,g8

rgrg8Qgg8
* ~3kD!D

2
2

3
p2b4ea

2 1

kD
2 F(

g
rgeg

3G2

,

~137!

where the second equality comes from the fact t
Qgg8

* (3kD) depends onr by a lnkD term. The other term of
orderr is a diffraction contribution and may be viewed as
partial derivative,

I ~2!diff
$1% 522pbH eala

2FC01
2

3
dC~uCa!G S (

g
rgegD

1eaS (
g

FC01
2

3
dC~uCg!Grgeglg

2D J
5

]

]ra
F22pbS (

g
FC01

2

3
dC~uCg!Grgeglg

2D
3S (

g8
rg8eg8D G . ~138!

At order r3/2 the bondFRT also provides a direct as we
as a diffraction contribution,

I ~2!dir
$3/2% 52

2

3
pb4ea

4kD(
g

rgeg
41beakD(

g
rgegQag* ~4kD!,

~139!

I ~2!diff
$3/2% 52

1

8
kD

3 bea
2la

2FC01
2

3
dC~uCa!G

2
p

2
b2kDea

2 S (
g

FC01
2

3
dC~uCg!Grgeg

2lg
2D .

~140!

2. Diagram of Fig. 3 and completion of the direct term
at order r

The diagram in Fig. 3, namely,

E dr $Fcc* ~1/2!@Fcc#2* Fcc%~r !,

contributes from orderr loop. More precisely, Fig. 3 has a
symmetry factor equal to 2 and

J~3!~ja!5
1

2
b4ea

2
F(

g
eg

3 (
p51

`

p3E D~X!rg,p~X!G2

k2
A,

~141!

where A[(1/2)*@dq/(2p)3#@f̃(q)#2@f 2̃#(q) where f̃(x)
5f(x/k;k) is defined in Eq.~77!. Since
t

f̃~q!5
4p

11q2
~142!

and

1

2
@f 2̃#~q!5

2p

q
arctanS q

2D ~143!

we find A54p2/3.
After r expansion, the first term in

I ~3![E DB0
~ja!J~3!~ja!

is of orderr. I (3)
$1% completesI (2)dir

$1% in order to form a partial
derivative, and the next term inI (3) is only of orderr2 ac-
cording to Eqs.~36! and ~56!. More precisely,

I 3
$1%5I ~3!dir

$1% 5
2

3
p2b4ea

2 1

kD
2 F(

g
rgeg

3G2

~144!

and comparison with Eq.~137! shows that, since there is n
other direct contribution at orderr,

E DB0
~j!Jdir

$1%~j!5I ~2!dir
$1% 1I ~3!dir

$1%

5
]

]ra
S 1

2(
g,g8

rgrg8Qgg8
* ~3kD!D .

~145!

We notice that the diagramFmc* (1/2)@Fcc#2* Fcc gives a
contribution whoser loop expansion shoulda priori start at
order r loop

3/2 . However, ther loop
3/2 term vanishes after integra

tion with the measureDB0
(ja) and its contribution to

*DB0
(ja)J(ja) starts only from orderr loop

2 .

3. Diagram of Fig. 4 and completion of the direct term
at order r3/2

The contribution from Fig. 4, namely,Fcc* FRT* Fcc,

starts at orderr loop
3/2 and, at this order, it only involvesFRT̃(q)

at orderr loop
0 . Figure 4 has a symmetry factor equal to 2 a

J~4!~ja!5
1

2
b2ea

2 1

kE dq

~2p!3
@f̃~q!#2

3 (
g,g8

rgegrg8eg8E DB0
~j!E DB0

~j8!

3F̃RT
$0%~q,j,j8!. ~146!

The point is that, afterr expansion, the sumI (2)dir
$3/2% 1I (4)dir

$3/2% is
a partial derivative.

The first term in ther expansion is calculated by usin
Eq. ~108! at orderr0, *@dq/(2p)3#@f̃(q)#252p, and the
formula ~92! in order to calculate
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E dq

~2p!3
@f̃~q!#2E dx@eiq•x21#

e23x

x3
58p2@ ln322ln2#.

~147!

The contribution from Fig. 4 at orderr3/2 may be decom-
posed in two terms

I ~4!dir
$3/2% 5pb2ea

2 1

kD
(
g,g8

rgegrg8eg8Qgg8
* ~4kD! ~148!

and

I ~4!diff
$3/2% 52pb2ea

2kD(
g

FC01
2

3
dC~uCg!Grgeg

2lg
2.

~149!

After inspection of diagrams, it turns out that the sum
the direct terms at orderr3/2 is given by Eqs.~139! and
~148!,

E DB0
~j!Jdir

$3/2%~j!

5I ~2!dir
$3/2% 1I ~4!dir

$3/2%

5
]

]ra
S 1

2
bkD (

g,g8
rgegrg8eg8Qgg8

* ~4kD!D
2

]

]ra
S p

3
b4kDF(

g
rgeg

4G2D ~150!

while the sum of the diffraction terms at orderr3/2 arises
from Eqs.~134!, ~140!, and~149! with the result

E DB0
~j!Jdiff

$3/2%5I ~1!diff
$3/2% 1I ~2!diff

$3/2% 1I ~4!diff
$3/2%

52
b

4

]

]ra
S kD

3 (
g

FC01
2

3
dC~uCg!Grgeg

2lg
2D . ~151!

Both sums prove to be partial derivatives, as they should

D. Purely classical contributions at orderr3/2

The last figures contain purely classical diagrams wh
are exactly of orderr3/2(L) and which do not involve short
ranged effects. We have chosen to collect all diagrams wh
sum is a derivative with respect tora in one given figure.
Moreover, we already notice that diagrams in Fig. 5 give
contribution to ln(ra /ra

id!,MB) of the form (re3)2re4

whereas the terms arising from the diagrams in Figs. 6 an
have the same (re3)4 structure. The detailed calculations a
displayed in Appendix B and the results are the following

The total contribution from diagrams in Fig. 5 at ord
r3/2 is

I ~5!
$3/2%524pK1b5

]

]ra
F 1

kD
S (

g
rgeg

3D 2S (
g8

rg8eg8
4 D G ,

~152!
f

h

se

a

7

whereK1 is defined as

Kn[E
0

`

dq
1

@11q2#nFarctanS q

2D G2

. ~153!

The sum of the terms arising from Fig. 6 at orderr3/2 reads

I ~6!
$3/2%58p2K2b6

]

]ra
F 1

kD
3 S (

g
rgeg

3D 4G . ~154!

Each contribution from the two diagrams in Fig. 7 may
expressed in terms of a dimensionless integralĨ bridge 6

[(1/kD
3 )I bridge 6 with the result

I ~7!
$3/2%5

1

24
b6 Ĩ bridge 6

]

]ra
F 1

kD
3 S (

g
rgeg

3D 4G , ~155!

where

Ĩ bridge 6[E dq

~2p!3E dq8

~2p!3E dq9

~2p!3
f̃~q!f̃~q8!f̃~q9!

3f̃~q2q8!f̃~q2q9!f̃~q82q9!. ~156!

The integralĨ bridge 6 can be reduced to a triple integral by th
following transformation. In the same way as in Ref.@14#,
the integral is written in Fourier space in spherical coor
nates. Then, according to the method in Ref.@15#, the three
functions that depend on relative angles are expande
terms of Legendre polynomials. The addition and orthog
nality theorems for Legendre polynomials lead to

Ĩ bridge 65384(
b50

1`

~2b11!E
0

`

du1

1

11u1
2

3E
u1

`

du2

Qb~x12!

11u2
2 E

u2

`

du3

Qb~x13!Qb~x23!

11u3
2

,

~157!

where Qb(x) is a Legendre function of the second kin
Qb(z)[(1/2)*21

1 dtPb(t)/(z2t), and xi j [(11ui
21uj

2)/
2uiuj .

E. Free-energy expression

By collecting the previous exact results up to orderr5/2 ,
we find that, for sets of densities that satisfy the local n
trality relation(aeara50, we get Eqs.~16!–~18d!. The dif-
ference, up to orderr5/2, between the exact volume densitie
f of free energies with or withoutB0 reads
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b f ~b,$ra%,B0!2b f ~b,$ra%,B050!

5(
a

ralnS sinhuCa

uCa
D1(

a
ralnS ~2Sa11!sinhuSa

sinh@~2Sa11!uSa# D2
1

2(a
~21!2Sa

2Sa11
@11bkDea

2 #ra
2~4pla

2 !3/2

3E dr F ~2Sa11!tanhuSa

tanh@~2Sa11!uSa#

sinhuCa

uCa
^2r ue2bhrel,a~B0!ur &2^2r ue2bhrel,a~B050!ur &G

2
1

2(a,g
@11bkDeaeg#rarg~2plalg!3E dr FsinhuCa

uCa

sinhuCg

uCg
^0,r ue2bHag~B0!u0,r‹2^0,r ue2bHag~B050!u0,r &G

1
1

6

b\c

B0
kD

3 (
a

raeaL [3]~bmBaB0!1o~r5/2!. ~158!

In the direct terms, the difference between quantities withB05” 0 andB050 automatically performs the truncations needed
extended states, and the corresponding contribution at orderr2 is the same as in the case of short-ranged interactions.

The pressure can be derived from Eqs.~16!–~18d! by using the thermodynamic relationP5(ara(] f /]ra)2 f . Terms of
the form Fn

$p%[kD
n (a1 , . . . ,ap

ra1
3•••3rap

Ba1 , . . . ,ap
in f are just multiplied by@(n/2)1p21# in the pressureP, whereas

terms with the structure (lnkD)Fn
$p% in f lead to$(1/2)1@(n/2)1p21# lnkD%Fn

$p% in P. Eventually,

bP5(
a

ra2
1

24p
kD

3 ~159a!

2
1

2(a ~21!2SaS 11
3

2
bkDea

2 D tanhuSa

tanh@~2Sa11!uSa#
ra

2sinhuCa

uCa
~4pla

2 !3/2E dr ^2r ue2bhrel,aur & ~159b!

2
1

2(a,g
S 11

3

2
bkDeaegD rarg lim

R→`
H E

r ,R
drFsinhuCa

uCa

sinhuCg

uCg
~2plalg!3^0,r ue2bHagu0,r &211

beaeg

r
2

~beaeg!2

2r 2 G
1

2p

3
~beaeg!3ln~kDR!J 2

p

3 F1

2
1C1 ln3Gb3S (

a
raea

3 D 2

1pF1

3
2

C

2
2 ln2Gb4kDS (

a
raea

4 D 2

~159c!

1
1

16
\2b2kD

3 (
a

ra

ea
2

ma
1

1

4

b\c

B0
kD

3 (
a

raeaL [3]~uCa! ~159d!

1C1b5
1

kD
S (

a
raea

3 D 2S (
g

rgeg
4D 1C2b6

1

kD
3 S (

a
raea

3 D 4

. ~159e!
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WhenB050, we retrieve the result given in@4#.

VI. CASE OF THE ONE-COMPONENT PLASMA

A. From the two-component plasma to the OCP

1. Limit procedure

The free energy of the OCP is derived from the formu
valid for a two-component plasma~TCP! by the procedure
used in Ref.@4#. First, the mass of one given species goes
infinity so that the positions of the corresponding partic
are fixed; then its charge vanishes as its density beco
infinite while their product is kept constant so that glob
neutrality remains valid. This second step ensures that
fixed particles turn into a uniform neutralizing backgroun
In this section, we will call (r1 ,m1 ,e1) @(r2 ,m2 ,e2)# the
density, mass, and charge of the light@heavy!# particles. The
s

o
s
es
l
he
.

procedure has already been tested successfully in the abs
of any magnetic field. In this case its results have been c
pared with those of a direct derivation of the low-density fr
energy for the OCP through Mayer expansions@16#. More-
over, the classical terms for the OCP that are derived thro
this procedure in Ref.@4# coincide with those of Ref.@14#
which are directly calculated for the OCP.

In the limit wherem2 goes to infinity, the heavy particle
become classical becausem2 always appears through the ra
tio m2 /\. The matrix elements involving species 2 can
derived in this limit from the generalized Wigner-Kirkwoo
expansions in the presence of a magnetic field of any in
sity ~see @8#!. Indeed, if Hag is written ashB0 ,g

(0) 1Vra
(rg)

wherehB0 ,g
0 (rg ,“ rg

) is the Hamiltonian~43! of a heavy par-

ticle of speciesg alone in the magnetic field, then in th
classical limit for the heavy particle, according to Eq.~5.2!
of Ref. @8#,
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lim
mg→`

sinhuCg

uCg

~2plg
2!3/2

3^rguexp$2b@hB0 ,g
~0! ~rg!1Vra

~rg!#%urg&

5exp@2bVra
~rg!#@11O~\2!#. ~160!

In the right-hand side of Eq.~160! rg is no longer an opera
tor, butVra

(rg) may involve operators acting on the coord

natesra of the light particle.

2. Straightforward limits

Whenm2 goes to infinity,l2 goes to zero as well asuC2
.

In this limit, the purely classical terms~18c! are unchanged
and whene2 goes to zero the summation overa and g re-
duces to the contribution from one species. The diffract
contributions~18d! from the heavy particles, which are pro
portional tol2

2 at uC2
fixed, vanish while those from the ligh

particles remain unaltered. For light particles, the excha
term remains unchanged, whereas it tends to its class
limit in the case of heavy particles.

Since the variables of the center of mass and of the r
tive particle are decoupled for identical particles, even in
presence ofB0 , they can be separated. According to E
~21! the exchange~direct! term for two heavy particles
of species 2 is proportional to (sinhuC2

/uC2
) times

(4pl2
2)3/2^r 8uexp@2bhrel,2#ur & with r 852r (r 85r ). In the

classical limit,uC2
goes to zero, the term sinhuC2

/uC2
tends

to 1. The exchange integral*dr ^2r uexp@2bhrel,2#ur & indeed
vanishes. It becomes exponentially small when\ goes to
zero; more precisely, this was shown for smallB0 in Ref. @9#
and for infiniteB0 and in two dimensions in Ref.@8#. For
^r uexp@2bhrel,2#ur &, the classical limit of the contribution
from the relative particle is obtained from Eq.~160! where
there is no particle of speciesa and the role of speciesg is
played by the relative particle with massm2/2, chargee2/2,
andV(r2)5e2

2/r . Then the classical Boltzmann factor is r
trieved,

lim
m2→`

S sinhuC2

uC2

D 2

~2pl2
2!3^0,r ue2bH22u0,r &5e2be2

2/r .

~161!

By inserting Eq.~161! in the truncated integral of Eq.~18b!
and taking the limite2 going to zero, we obtain that th
direct term for species 2 vanishes.

3. Direct term with two different species

In the case of the direct terms involving the two specie
and 2, there is no separation of variables, but when spec
becomes classical, an effective separation turns out thro
Eq. ~160! where the role of speciesa (g) is played by
1 (2) andVra

(rg)5hB0,1
(0) 1e1e2 /r . By inserting Eq.~160!

into Q12* (nkD) given by Eq.~110! we get
n

e
al

a-
e
.

1
2

gh

lim
e2→0U

e2r252e1r1

F lim
m2→`

r1r2Q12* ~nkD!G
5 lim

e2→0Ue2r252e1r1

r1r2A12, ~162!

with

A125E
r ,R

dr H ~2pl1
2!3/2

sinhuC1

uC1

3^r ue2b[hB0,1
~0!

1e1e2 /r ] ur &211
be1e2

r J , ~163!

with l15Ab\2/m15 limm2→`l12, wherel12 is associated
with the relative particle with reduced mas
Am1m2 /(m11m2).

In order to study the limit ofA12 when e2 vanishes, we
use the expansion of Dyson equation up to ordere2 ,

e2bhB0,1
~0!

2bE
0

1

ds e2b~12s!hB0,1
~0! e1e2

r
e2bshB0,1

~0!
1O~e2

2!,

~164!

wherehB0,1
(0) and 1/r denote operators.~In fact the small di-

mensionless parameter isG125be1e2 /a!1). According to
Eq. ~42! and the closure relation*dr 8ur 8&^r 8u5I ~whereI is
the identity operator!, thee2 expansion ofA12 reads

A1252be1e2E
0

1

dsE
r ,R

drE dr 8F 1

r 8
2

1

r G
3~2pl1

2!3/2
sinhuC1

uC1

^r ue2b~12s!hB0,1
~0!

ur 8&

3^r 8ue2bshB0,1
~0!

ur &1O~e2
2!. ~165!

We set r 85r1t and make a Taylor expansion of (1/r 8)
2(1/r ) around 1/r . After integration over orientations ofr ,
all derivatives eventually lead toDp(1/r ) terms. Equation
~82! can be generalized to an integral over a finite volu
with the result* r ,RdrDp(1/r )50 for p>2, already used in
Eq. ~97!. Eventually,

A1252b e1e2E
0

1

dsE
r ,R

dr
1

2(m gm~s!]mmS 1

r D1O~e2
2!,

~166!

with, according to Eq.~42!,

gm~s![~2pl1
2!3/2

sinhuC1

uC1

E dt@ tm#2^0ue2b~12s!hB0,1
~0!

ut&

3^tue2bshB0,1
~0!

u0&5
^0uexp@2bhB0,1

~0! #@xH~s!#2u0&

^0uexp@2bhB0,1
~0! #u0&

,

~167!
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wherexH(s) is the position operator in Heisenberg repres
tation at ‘‘imaginary time’’s. According to the relation be
tween the path integral of a function and the average valu
the corresponding operator in Heisenberg representa
~see, for instance, page 174 of Ref.@17#!,

^0uexp@2bhB0,1
~0! #@xH~s!#2u0&

5l1
2covmm~s,s;uC1

!^0uexp@2bhB0,1
~0! u0&,

~168!

where covmm(s,s;uC1
) is defined in Eq.~45!. Moreover,

by using the identity*dr]mm(1/r )524p/3 ~without any
implicit summation over the indexm), we find a result
similar to the diffraction term ~98! in
*dr*D(j1)*D(j2)FRT(r ,j1 ,j2),

A125be1e22pl1
2FC01

2

3
dC~uC1

!G1O~e2
2!. ~169!

As a conclusion, in the limit wheree2 goes to zero with
the neutrality constraint r2e252r1e1 , r1r2Q12* (nkD)
leads to a nonvanishing diffraction term where
e1e2kDr1r2Q12* (nkD) disppears. Henceforth, in the case
the OCP, the diffraction term is nonzero at orderr2, whereas
this term does not appear in the free energy of a multico
ponent plasma because of the neutrality equation for the
sities of moving particles. On the contrary, diffraction co
t

e
u
o
m

-
te

th
-

of
on

-
n-

tributions at orderr5/2 have the same structure in both kind
of systems. We notice that this section is a demonstratio
the result

lim
e2→0U

e2r252e1r1

F lim
m2→`

r1r2Q12* ~nkD!G
5\2r1

2 p

3
b2

e1
2

m1
F1

2
1

1

uC1

L [3]~uC1
!G . ~170!

4. OCP free energy

From now on, we change the notation (r1 ,m1 ,e1) into
(r,m,e). In the absence ofB0 , the quantitiesQ* and E*
introduced in the calculations of the present paper dif
from Q andE introduced in Ref.@7# only by a multiplicative
factor 1/(4pl3) and an additive constant in the case ofQ.
According to the operator representation ofQ* given in Eq.
~110!,

QS 2
be2

l
,uCD5

1

4pl3FQ* ~3kD!2
2p

3
b3e6ln~kDl!G

~171!

while, according to Eqs.~21! and ~65!, E(2be2/l,uC)
5(1/4pl3)E* .

In order to point out the difference arising from the pre
ence ofB0 we may write Eq.~26! as
b f OCP~b,r,B0!2b f OCP~b,r,B050!5r lnS ~2S11!sinhuS

sinh@~2S11!uS# D1r lnS sinhuC

uC
D12p

~21!2S11

2S11
r2l3@11bkDe2#

3F ~2S11!tanhuS

tanh@~2S11!uS#
E~2be2/l,uC!2E~2be2/l,uC50!G ~172a!

22pr2l3@11bkDe2#@Q~2be2/l,uC!2Q~2be2/l,uC50!# ~172b!

1
2p

3

b2\2

m
r2e2S 11

1

2
bkDe2D 1

uC
L [3]~uC!1O~r3lnr!. ~172c!
tion

fined

ou-
f-
est
Up to orderr5/2, the results with or withoutB0 ~see Ref.@4#!
are similar to those for a multicomponent plasma~158!, apart
from the diffraction term~26e!, which does not vanish a
orderr2 ~see the end of the preceding section!.

We notice that the origin of the diffraction terms in th
method of Ref.@3# is essentially the same, though it turns o
in a different technical way. Indeed, the diffraction terms
a multicomponent plasma come both from bonds of the sa
nature as our bondFcm and from the integration off T,g over
g, where f T,g is the value off T when the Coulomb interac
tion is multiplied by the dimensionless coupling parame
g. The latter integration overg, with 0<g<1, involves cal-
culations similar to those that we used to get the limit of
OCP, in particular an expression analogous to Eq.~165! is
used.
t
f
e

r

e

B. Semiclassical limit for the OCP

In regimes of low degeneracy (l/a<1) and weak quan-
tum dynamical effects atuC[bmBB0 fixed, the expression
of the OCP free energy can be expanded with respect to\,
because the exchange density-matrix element in posi
space vanishes exponentially fast when\ goes to zero as
discussed above, and because the OCP has a well-de
thermodynamic limit even with MB statistics.

1. Semiclassical regime

The system is semiclassical for any value of a given c
pling if the length scalelqu beneath which the quantum e
fects are important is negligible with respect to the small
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length l that characterizes the coupling, whether the latte
weak or strong. The corresponding dimensionless param
reads

tqu[S lqu

l D 2

. ~173!

There is no semiclassical parameter associated with the
because the latter internal degree of freedom is intrinsic
quantum.

Let us first consider a system with only one kind of inte
actions. Thenlqu may be chosen to be equal to the amplitu
la of the quantum position fluctuations of free particles w
MB statistics at temperatureT. The semiclassical paramete
tqu which measures the importance of quantum dynam
effects for particles submitted to only one given interact
at a given temperature may be interpreted as the ratio

tqu5
«qu~ l !

« th
, ~174!

where« qu( l ) is the kinetic energy of the quantum dynamic
position fluctuations with an amplitudel which is the small-
est length characteristic of the interaction, while« th is the
average kinetic energy of free particles at equilibrium at te
peratureT. « qu( l ) is derived from the uncertainty prin
ciple and the form of the interaction, while, in a low
degeneracy regime,« th is given by the Maxwell-Boltzmann
expression,« th51/b.

In the case of Coulomb interaction, the two-body pote
tial has no intrinsic characteristic length. When collecti
coulombic effects are taken into account, according to
~7!, the smallest lengthl associated with these effects at tem
perature 1/b is either the classical closest distance of a
proachbaa ~whenG!1) or the screening lengthjD ~when
G@1).

In the case of the magnetic orbital interaction, there is
coupling between particles andl is merely the intrinsic
length derived from the one-body interaction with the ext
nal field. From the point of view of statistical mechanics, t
orbital magnetic interaction is essentially quantum in its fu
damental origin, though the one-body problem may be
counted for by classical relativistic dynamics. Therefore
corresponding characteristic lengthl is chosen to arise from
quantum instead of classical dynamics; namely, we use
characteristic quantum lengthl Ca in place of the classica
thermal gyromagnetic radiusRCa defined after Eq.~8! and

tqu, mag[S la

l Ca
D 2

52uCa . ~175!

@However,RCa is the relevant scale for semiclassical expa
sions of thermodynamic quantities, because then the re
ence quantities used in the statistical framework are ca
lated with classical dynamics. Moreover,la /RCa is equal to
the square ofla / l Ca , as mentioned in Eq.~8!, so that both
parameters increase with the intensityB0 of the magnetic
field according to Eq.~4!.#

We point out that whenB0 ~i.e., uCa) is increased, the
system becomes more and more quantum@i.e., la / l Ca in-
creases, according to Eq.~9!, and tqu, maggets larger#. How-
is
ter
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ever, at the same time the lengthlqu beneath which quantum
dynamics is crucial changes fromla to l Ca in the plane
perpendicular toB0 @8#, because, when the magnetic field
very strong, the particles are in the lowest Landau le
while the radiusl Ca of the Landau orbits is negligible with
respect tola , according to~9!. Then the Feynman-Kac-Itoˆ
integral is controlled by the phase factor, whose amplitud
proportional touCa and oscillates very fast, as discussed
Ref. @8#. In the plane perpendicular to the axis ofB0 , the
Landau orbits behave as heavy point particles with massma
times uCa /tanhuCa that increases withB0 and only thez
component of the quantum fluctuations does survive.

Subsequently, when both Coulomb and magnetic inter
tions are taken into account, a semiclassical regime show
for any values of the coupling parametersG anduCa when
the four following conditions are met. If the magnetic fie
B0 is weak (uCa!1), quantum fluctuations appear ov
scales smaller than or of orderlqu5la . On the other hand
according to Eq.~7!, the smallest lengthl associated with
Coulomb interaction isl 5baa whenG!1 and l 5jD when
G@1. Thus the system is semiclassical for any strength
the Coulomb coupling if bothla!baa and la!jD ,
namely,

la

a
!Gag , ~176a!

S la

a D 2

!
1

Gaa
. ~176b!

These two inequalities are indeed satisfied in the semicla
cal calculations of Ref.@9# which are performed in a limit of
weak magnetic field. On the other hand, when the magn
field is strong, quantum phenomena in the plane perpend
lar to B0 show up over scales smaller thanlqu5 l Ca . Thus,
by changingla into l Ca in the previous argument and b
using Eq.~8!, the semiclassical conditions~176a! and~176b!
become

la

a
!GaaAuCa, ~177a!

S la

a D 2

!
1

Gaa
uCa . ~177b!

2. Semiclassical and low-density limits

According to the preceding section, conditions for lo
degeneracy, (l/a)2<1, weak Coulomb coupling, and
weakly quantum dynamics atuC fixed may be fulfilled si-
multaneously. In the semiclassical expansions of Ref.@8#,
statistics is that of Maxwell-Boltzmann and dynamics
weakly quantum for any strength of the Coulomb and orb
magnetic couplings: conditions~176a!, ~176b!, ~177a!, and
~177b! are satisfied. On the other hand, in our low-dens
expansions, which correspond to low degeneracy and w
Coulomb coupling regimes, dynamics is fully quantum a
magnetic coupling is arbitrary. Thus our low-density resu
may be expanded in powers of\ at uC fixed in situations
where Eqs.~176a! and~177a! are valid. Thus it is legitimate
to compare the double expansions inr and \ obtained by
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making either\ or r go first to zero when Eqs.~176a! and
~177a! are fulfilled. In this section we omit the superscri
OCP in f in order to simplify notations.

First, the exchange terms are exponentially small whe\
goes to zero in the absence@11# as well as in the presenc
@8,9# of B0 . Moreover, the strict weak-coupling limit of th
semiclassical formula for exchange effects coincides with
first-order term in the low-density exchange contributi
~26b!. First, we consider the strict low-density limit of th
result~26b!. In a strict weak-coupling limit 11bkDe2 tends
to 1 ~the collective effects disappear! and the latter exchang
contribution tends to

b f exch5r2~2Apl!3
tanhuS

tanh@~2S11!uS#

sinhuC

uC

1

2

3E dr ^2r ue2bhrelur &1O~r5/2!. ~178!

On the other hand, if we generalize the semiclassical form
~5.10! of Ref. @9# which is derived forS51/2 and smalluC
to an expression valid for anySand a finite value ofuC , the
contribution from exchange effects to the free energy at fin
density when\ goes to zero atuC fixed reads

b f exch5r2eC~2Apl!3
tanhuS

tanh@~2S11!uS#

1

2

sinhuC

uC

3E dr ^2r ue2bhrelur‹@11OuC
~\2!#. ~179!

In Eq. ~179! OuC
(\2) is to be understood as a term of ord

\2 times a function ofuC which remains finite whenuC goes
to zero.C is related to the short-ranged behavior of the cl
sical pair distribution function and takes the many-body
fects into account. In the low-density~weak Coulomb cou-
pling! limit C vanishes and we get the announced result.

Now, we turn to terms of other kinds, namely, the p
f MB of f that is calculated with MB statistics. We show th
up to orderr5/2\2 ther expansion of the semiclassical resu
up to order\2 coincides with the\ expansion of the low-
density result up to orderr5/2. First, we consider the doubl
expansion where we expand the free energy with respectr
then to\. According to Eq.~26! the low-density expansion
of f MB takes the form

f MB$<5/2%~b,r,B0!2 f para~b,r,B0!2 f dia~b,r,B0!

5 f cl
$<5/2%~b,r!1Dquf dir

$<5/2%~b,r,B0!

1Dquf diff
$<5/2%~b,r,B0!, ~180!

where f $<n% denotes the low-density expansion off up to
orderrn included, and the quantum corrections read

bDquf dir
$<5/2%~b,r,B0!

[2r2@11bkDe2#H 2pl3QS 2be2

l
,uCD

2 lim
\→0

2pl3QS 2be2

l
,uC50D J ~181!
e

la

e

-
-

t

and

bDquf diff
$<5/2%~b,r,B0!

[r2F11
1

2
bkDe2Gp3 b\2

m
e2F11

2

uC
L ~3!~uC!G . ~182!

Let us consider the semiclassical limit of the direct te
bDquf dir

$<5/2% . The \ expansion atuC fixed of the diagonal
matrix element for a particle with massm/2 and chargee/2
in a potentiale2/r and submitted toB0 is given by formula
~5.2! of Ref. @8# whereuC is unchanged andl2 is multiplied
by 2. This formula gives the correction of order\2/m at G
and uC fixed to formula~160! of the present paper. Whe
B050, it reads

~4pl2!3/2^r ue2bhrel,B050ur &

5e2be2/r S 11
\2b2e2

12m H be2F“S 1

r D G2

22DS 1

r D J D
1O~\4!. ~183!

WhenB05” 0, it may be expressed as the sum

~4pl2!3/2
sinhuC

uC
^r ue2bhrel,B0ur &

5~4pl2!3/2^r ue2bhrel,B050ur &1e2be2/r
\2b2e2

4m

3
1

u
L [3]~u!H be2F“'S 1

r D G2

22D'S 1

r D J 1OuC
~\4!.

~184!

We recall that, by definition,L [3] (uC50)50. By using

E dr F]mS 1

r D G2

e2be2/r5
1

3E dr F“S 1

r D G2

e2be2/r5
4p

3

e2

b
~185!

and

E dr ]mmS 1

r D e2be2/r5
1

3E drDS 1

r D e2be2/r50

~186!

together with the definition~24! of Q, the formulas~183!
and ~184! lead to

4pl3QS 2
be2

l
,uC50D2 lim

\→0
F4pl3QS 2

be2

l
,uC50D G

5\2
p

3

b2e2

m
1O~\4! ~187!

and

4pl3FQS 2
be2

l
,uCD2QS 2

be2

l
,uC50D G

5\2
2p

3

b2e2

m

1

uC
L [3]~uC!1OuC

~\4!. ~188!
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As a consequence, we get

Dquf dir
$<5/2%~b,r,B0!

52\2r2@11bkDe2#
p

6

b2e2

m F11
2

uC
L [3]~uC!G

1OuC
~r2\4!. ~189!

Equation~189! shows one that in the semiclassical limit, th
difference between the direct term with or withoutB0 and its
classical corresponding contribution up to orderr5/2 gener-
ates diffraction terms at order\2. When the latter ones ar
added to the diffraction contributions already present
bD f diff

$<5/2% given by Eq.~182!, the diffraction terms at orde
\2r5/2 cancel each other. Eventually, the\ expansion of Eq.
~180! starts as

b@ f MB$<5/2%2 f para2 f dia#

5b f cl
$<5/2%1\2r2

p

6

b2e2

m F11
2

uC
L [3]~uC!G

1OuC
~r2\4!. ~190!

On the other hand, the\ expansion of the free energ
around its classical valuef cl at finite density may be ex
pressed from Eqs.~5.4!–~5.9! of Ref. @8# as

b@ f MB2 f para2 f dia#5b f cl1
p

6
b2\2r2

e2

mF11
2

uC
L [3]~uC!G

1OuC
~\4!, ~191!

where the term of order\2 is exactly of orderr2. Compari-
son of Eqs.~190! and~191! shows one that ther expansion
up to orderr5/2 of the semiclassicalf MB given in Eq.~191!
up to order\2 coincides with the\ expansion~190! up to
order\2 of f MB$5/2%. As a conclusion, we have checked th
the double expansion with respect tor and \ of the free
energy is independent of the order in which the two exp
sions are performed.
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APPENDIX A

There are three different methods that allow one to ob
the values~47! and ~48! of the covariances for independe
particles in a magnetic field. The first method provides o
only with covxx

a (s,s8;B0) and may be found in@18# as a part
of a more intricate calculation. We summarize it ve
quickly and we give two other methods which we have d
vised.

~a! In the first method, the two-dimensional measure

D~jx!D~jy!expS iCE
0

1

@jxdjy~s!2jydjx~s!# D , ~A1!
n

t

-

in

e

-

with C[eala
2B0/2\c, is expressed as an effective on

dimensional Gaussian measure

D~jx!expF2E
0

1

dsE
0

1

ds8jx~s!Â~s,s8!jx~s8!G ~A2!

and covxx
a (s,s8;B0) is identified as the Green functio

K(s,s8) of the quadratic operatorÂ(s,s8). The calculations
can be made explicitly by using basic properties of t
Gaussian measureD(j). Indeed, a characteristic property o
generalized Gaussian measure is the following. IfF@jy# is a
linear functional ofjy anddjy ,

E D~jy!exp$ iF @jy#%5expH 2
1

2E D~jy!~F@jy# !2J ,

~A3!

where *D(jy)(F@jy#)
2 is in fact a function of the covari-

ances *D(jy)jy(s)jy(s8), *D(jy)djy(s)jy(s8), and
*D(jy)djy(s)djy(s8). The expressions of the free covar
ances involving derivatives are derived from Eq.~46!. By
using the Itoˆ lemma introduced in Sec. III B of Paper I, w
get

D~jx!E D~jy!expH iCE
0

1

@jxdjy~s!2jydjx~s!#J
5D~jx!expH 22C2E

0

1

dsE
0

1

ds8

3@d~s2s8!21#jx~s!jx~s8!J . ~A4!

The quadratic form in the exponential of the right-hand s
can be written in terms of an operatorÂ(s,s8) as in Eq.~A2!.
The corresponding Green functionK(s,s8), such that
*ds9*ds8Â(s,s9)K(s9,s8)5d(s2s8), is the solution of the
equation

2
d2

ds2 K~s,s8!12C2FK~s,s8!2E
0

1

ds9K~s9,s8!G
5d~s2s8!, ~A5!

with K(0,s8)5K(s,0)50.
~b! In the ‘‘sources’’ method, the covariance is derived

the second functional derivative of the generating functio
Z(E),

la
2covmn

a ~s,s8;B0!5
1

b2

d2~Z@E# !

dEm~s!dEn~s8!
U

E50

, ~A6!

whereZ(E) is the integrated measure in the presence of
external fieldE that is linearly coupled to the fieldj,

Z@E#[E DB0
~j!expH labE

0

1

ds9 E~s9!•j~s9!J .

~A7!

This functional can be calculated explicitly when it is e
pressed as a path integral in the phase space~with positions
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and momenta as variables! and when the gauge is chosen
beA5(0,B0x,0). Indeed, with the latter choice, the integra
over the variablesjy and jz are trivial and the problem is
reduced to the calculation of the path integral of a o
dimensional harmonic oscillator in the presence of a unifo
external force that depends on times as on page 131 of Ref
@17#. The result may be expressed as the exponential
quadratic form

Z@E#[expH ~la
2b2/2!E

0

1

dsE
0

1

ds8Em~s!En~s8!Kmn
a ~s,s8!J

~A8!

so that covmn
a (s,s8;B0)5@Kmn

a (s,s8)1Knm
a (s8,s)#/2.

~c! In the third method, the covariance may be expres
in terms of time-displaced correlations for position operat
in Heisenberg representation,

la
2covmn

a ~s,s8;B0!5u~s2s8!Gmn~s,s8!

1u~s82s!Gnm~s8,s!, ~A9!

where

Gmn~s,s8!5
^0ue2bhB0 ,a

~0!
@rH~s!#m@rH~s8!#nu0&

^0ue2bhB0 ,a
~0!

u0&
.

~A10!

The calculations can be made explicitly because the eq
tions of motion for the position operators are those of a u
form rotation around the axis ofB0 . This method is the mos
elementary as regards its application. The details can be s
marized in four steps as follows.

First, the calculation of the covariance is changed into
determination of matrix elements of operators in Heisenb
representation. According to Eqs.~42!–~45!, and the relation
between path integrals of functions and the correspond
operators in Heisenberg representation~see page 174 of Ref
@17#!,

^r!ue2bhB0 ,a
~0!

ur!&$@r!#m@r!#n1la
2covmn

a ~s,s8;B0!%

5u~s2s8!^r!ue2bhB0 ,a
~0!

@rH~s!#m@rH~s8!#nur!&

1u~s82s!^r!ue2bhB0 ,a
~0!

@rH~s8!#n@rH~s!#mur!&,

~A11!

where^r!uexp@2bhB0 ,a
(0) #ur!& is given by Eq.~42! andrH(s)

is the position operator in Heisenberg representation at
imaginary timet52 ib\s . The operators without any sub
script are in Schro¨dinger representation.

Then rH(s) is determined by the equations of motion
Heisenberg representation in imaginary time. They read

dpH~s!

ds
5b@hH

~0!~s!,pH~s!#, ~A12a!

drH~s!

ds
5b@hH

~0!~s!,rH~s!#. ~A12b!
-

a

d
s

a-
i-

m-

e
g

g

e

By introducing the velocity operator v5(1/ma)@p
2(ea /c)A#, the Hamiltonian can be rewritten ashB0 ,a

(0) (s)

5(ma/2)v2(s). For a uniform magnetic fieldB0 , @vx ,vy#
5 i\vCa /ma in any gauge@19# and in Schro¨dinger as well
as in Heisenberg representation. In the symmetric gaugA
5(1/2)B0`r ,

1

2 ib\

dvH~s!

ds
52vCaB̂0`vH~s!, ~A13a!

1

2 ib\

drH~s!

ds
5vH~s!. ~A13b!

ThusrH(s) andvH(s) turn around the axisB̂0 with an imagi-
nary frequencyib\vCa52iuCa ,

xH~s!5x1
1

vCa
$2 i @v#xsinh~2uCas!

1@v#y@12cosh~2uCas!#%, ~A14!

yH~s!5y1
1

vCa
$2@v#x@12cosh~2uCas!#

2 i @v#ysinh~2uCas!%. ~A15!

Thus the calculation of the covariance reduces to the ca
lation of matrix elements ^r!uexp@2bhB0 ,a

(0) #O1O2ur!&,

whereO1 andO2 are the components of either the positio
or the velocity Schro¨dinger operators.

The value of the thermal propagator between two non
incident points may be found in the literature~see, for in-
stance,@17#!. For a magnetic fieldB05B0êz , it reads

^rbue2bhB0 ,a
~0!

ura&5
1

~2pla
2 !3/2

uCa

sinhuCa

3expH 2
1

2la
2F ~zb2za!21

uCa

tanhuCa

3@~xb2xa!21~yb2ya!2#

1 i2uCa~xbya2xayb!G J . ~A16!

Since the position operator is diagonal in the basisur &, the
matrix elements withO15@r #m andO25@r #n are just equal
to @r!#m@r!#n times ^r!uexp@2bhB0 ,a

(0) #ur!&. WhenO15@r #m

and O25@v#n , we use the commutation relatio
†@r #m ,@v#n‡5 i (\/ma)dm,n , the Hermiticity of operators and
the result

^r!uve2bhB0 ,a
~0!

ur!&50. ~A17!

WhenO1 andO2 are velocity components, we use the He
miticity of operators again to reduce the calculation to that
the following matrix elements:
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^r!u@v#x
2e2bhB0 ,a

~0!
ur!&5^r!u@v#y

2e2bhB0 ,a
~0!

ur!&

5
1

bma

uCa

tanhuCa
^r!ue2bhB0 ,a

~0!
ur!&,

~A18!

^r!u@v#x@v#ye
2bhB0 ,a

~0!
ur!&52^r!u@v#y@v#xe

2bhB0 ,a
~0!

ur!&

5 i
1

bma
uCa^r!ue2bhB0 ,a

~0!
ur!&.

~A19!

Finally, we get the results given in Eqs.~47! and ~48!.

APPENDIX B

The present appendix is devoted to the derivation of
contributions from classical diagrams to ln(ra /ra

id!,MB) at or-
der r3/2.

1. Contributions from diagrams of Fig. 5

Contributions from diagrams of Figs. 5~a!, 5~b!, and 5~c!
are simply expressed in terms of Fourier tranform of con
lutions that involvef̃(q) and f̃2(q). We notice thatea

n

5]((grgeg
n)/]ra . By using Eq.~129! and introducing the

definition ~153! we find

I 5~a!524pK1b5
]

]ra
F S (

g
rgeg

3D 2G S (
g8

rg8eg8
4 D 1

kD
,

~B1!

I 5~b!524pK1b5S (
g

rgeg
3D 2 ]

]ra
F(

g8
rg8eg8

4 G 1

kD
,

~B2!

I 5~c!528pK2b5S (
g

rgeg
3D 2S (

g8
rg8eg8

4 D ]

]ra
F 1

kD
G .
~B3!

The contribution from the diagram 5~d! containsL1 with the
definition

Ln[E dq

~2p!3
@f̃~q!#2E dq8

~2p!3
f̃~q2q8!

3@f̃~q8!#n
1

2
f̃2~q8!. ~B4!

If we notice that

E dq

~2p!3
@f̃~q!#2f̃~q2q8!5

2p2

11~q82/4!
5

p

2
f̃S q8

2 D
~B5!

then a mere integration by parts allows one to reexpressL1
in terms ofK1 andK2 ,

L158p2@K122K2#. ~B6!
e

-

Eventually,

I 5~d!524p@K122K2#b5S (
g

rgeg
3D 2

3S (
g8

rg8eg8
4 D ]

]ra
F 1

kD
G ~B7!

and we get the formula~152!.

2. Contributions from diagrams of Fig. 6

Again, the contributions from Figs. 6~a! and 6~b! are
readily expressed as Fourier transforms of convolutions
involve functionsKn defined in Eq.~153!. The results are

I 6~a!58p2K2b6
]

]ra
F S (

g
rgeg

3D 4G 1

kD
3

, ~B8!

I 6~b!5
32

3
p2K3b6S (

g
rgeg

3D 4 ]

]ra
F 1

kD
3 G . ~B9!

The contribution from diagram 6~c! may be written in terms
of L2 with the definition~B4!. As in the case ofL1 , we use
Eq. ~B5! and an integration by parts to writeL2 in terms of
K2 andK3 ,

L2532p3@3K224K3#. ~B10!

Finally

I 6~c!5
8

3
p2@3K224K3#b6S (

g
rgeg

3D 4 ]

]ra
F 1

kD
3 G

~B11!

and we get formula~154!.

3. Contributions from diagrams of Fig. 7

We introduce the ‘‘bridge’’ integral with six bondsFcc,

I bridge 6[E dk

~2p!3E dk8

~2p!3E dk9

~2p!3
f~k!f~k8!f~k9!

3f~k2k8!f~k2k9!f~k82k9!. ~B12!

The symmetry factor of diagram 7~a! is equal to 3!, because
any permutation of the three internal points does not cha
the integrand. Thus

I 7~a!5
1

3!
b6ea

3 S (
g

rgeg
3D 3

I bridge 6

5
1

24
b6

]

]ra
F S (

g
rgeg

3D 4G I bridge 6. ~B13!

The symmetry factor of diagram 7~b! is 4, because, if 1 and
2 denote the two points that are linked to the root point wh
3 and 4 label the two other internal points, the allowed p
mutations that do not change the integrand are the follow
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the identity, the permutation of 1 with 2, that of 3 with 4, an
the simultaneous permutations of 1 with 2 and 3 with 4. T
contribution from 7~b! is

I 7~b!52
1

4
b7ea

2 S (
g

rgeg
3D 4

I bridge 6
[2] , ~B14!

where I bridge 6
[2] denotes an expression similar to Eq.~B12!

where f(k) is replaced by @f(k)#2. Moreover, we
u

e
notice that I bridge 6

[2] 52(2p/3)dIbridge 6/d(kD
2 ) and ea

2

5(1/4pb)]kD
2 /]ra . Henceforth

I 7~b!5
1

24
b6

]I bridge 6

]ra
S (

g
rgeg

3D 4

~B15!

and we obtain Eq.~155!.
,
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