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Quantum plasmas with or without a uniform magnetic field. 1l. Exact low-density free energy

F. Cornu
Laboratoire de Physique, Laboratoire assoeie CNRS URA 1325, Ecole Normale Stgare de Lyon,
46 alles d'ltalie, F-69364 Lyon Cedex 07, France
(Received 20 January 1998

The exact analytical expression of the free energf a quantum Coulomb plasma in the presence of a
uniform magnetic fieldB, is produced at low density. This regime corresponds to low degeneracy, weak
Coulomb coupling but any strength of the magnetic field and fully quantum dynamics.fTilwesxpanded
around its value for an ideal gas in the Maxwell-BoltzmdhkiB) approximation which provides a description
of orbital diamagnetism and Pauli paramagnetism. ghexpansion foff is derived from an adequate Mayer
diagrammatic representation of the ratio between the plasma density and the density of the ideal gas with the
same chemical potentials and MB statistics. A systematic scaling analysis of the dependence of Mayer bonds
upon density is devised. This provides a natural truncation of the trace of the two-body Gibbs factor as well as
diffraction contributions specific to the long range of the Coulomb potential. gPeterm inf is the purely
classical Debye contribution. From ordef on, B, is involved through quantum dynamical and statistical
effects which are the root of ferromagnetisiiloreover, we retrieve the purely classical contributions at order
p>?in a very compact form.Our results are compared with semiclassical expressions in the case of the
one-component plasmgS1063-651X98)02710-X]

PACS numbgs): 05.30-d, 05.70.Ce, 71.45.Gm

I. INTRODUCTION [1] and derived in Refs[2—4], though our method starts
from a different thermodynamic expression for the free en-
The present paper is devoted to the principles of the deriergy and treats exchange effects systematically from the be-
vation of exact analytical low-density expansions in theginning instead of perturbativelyWhen By=0 the low-
framework of the loop formalism of paper I, which takes density equation of state properly describes the core of the
exchange effects systematically into account. The method isun, where dynamics proves to be controlled by Debye and
applied to the calculation of the free energy of multi- or exchange effect§5].) In the path integral formalism, the
one-component plasmas in the presence—as well as in thgagnetic field shows up only in phase factors and the struc-
absence—of a uniform magnetic fiel@,. [A one-  ( res of hoth the derivation and results are similar whether
component plasméOCP is a system where only one speciesg s gitched on or not. A brief discussion of the effects

of charge:s IS moving In a rigid neutralizing backgrodnd. arising from the presence of the magnetic field has already
The Hamiltonian of a multicomponent plasma reads been given in Ref(6].

We point out that this exact calculation starts from the
first principles of quantum mechanics. All contributions that
can be interpreted as being purely classical do not involve
the magnetic field, in agreement with the Bohr—van Leeuwen
theorem: magnetism is intrinsically quantum in its statistical
origin. The MB free energy® for the ideal gas already
incorporates the orbital diamagnetism arising from quantum
with the same notations as in Paper I. The low-density limitdynamics as well as the Pauli paramagnetism due to the cou-
corresponds to a regime of low degeneracy and weak Cowpling betweenBy and the spin quantum degree of freedom.
lomb coupling for any strength of the uniform magnetic These one-body phenomena appear at the first order in den-
field. Thus the volume density of free enerfis expanded sity, namely at ordep. A correction of orderp®? comes
around its valuéli° for a quantum ideal gas in the Maxwell- from the exponential screening of the monopole potential
Boltzmann(MB) approximation and with the same densitiescreated by a charge and its polarization cloud at large dis-
in the presence dB,. We stress that the results contain all tances. The latter screening is valid at both classical and
guantum effects at any order . We get the analytical quantum levels and this first correctionﬂ:ﬂB is independent
expression of up to orden®?, wherep is a generic notation from B,. The combined effect of the one-body spinorial cou-
for the particle densities. We use the convention that a termpling with the external magnetic field, Coulomb interactions,
of orderp" may include powers of jn (In other words, the and quantum statistics emerges only from orgéron. It
possible logarithmic terms are considered to be of opfer both renormalizes and mixes diamagnetism and paramagnet-
=1.) These Ip terms as well as half-integer powers of the ism. As a consequence, an effective coupling between spins
density appear because of collective screening effects due sthows up, though there is no fundamental magnetic dipolar
the long range of the Coulomb potential. We retrieve theinteraction between spins in the Hamiltonian. In the sense
results up to ordep®? for the caseB,=0 produced in Refs. that thep? term in the free energy can be related to an ef-
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fective two-body potential, the root of ferromagnetism is al- In Sec. VI we turn to the case of the one-component
ready present at the scale of the two-body exchange effect iplasma. In Sec. VI A the free energy of the OCP is derived
the presence of Coulomb interaction. from the formula valid for a two-component plasma by send-

The rest of the paper is organized as follows. In Sec. Il wang the mass of one species to infinity and its charge to zero
present the main results. The dimensionless coupling paramvhile keeping charge neutrality. An ingredient of the limit-
eters of the problem at finite temperaturgd Hre discussed ing process is the derivation of the smalbehavior of the
in Sec. Il A. The reference free energy is recalled in Sec. |l Bgeneralized direct functio®(x,uc) introduced in Ref[7]
and our results for the free energy are given in Sec. Il C. Thédor uc=0. The OCP has a well-behaved classical limit in the
limiting case of the OCP free energy and its semiclassicaMB approximation, because all moving charges are of the
value are discussed in Sec. IID. The main features of theame sign and quantum statistics is not needed to avoid any
method are discussed in Sec. IlE and comparison is madaacroscopic collapse. In Sec. VIB we analyze the regimes
with another formalism that allows one to derive the exactof parameters in which the system goes to a semiclassical
low-density free energy in the absenceBy. limit for any strength of Coulomb or orbital magnetic cou-

In Sec. lll the scheme for low-density expansions is dis-plings. In Sec. VIC, we check that the low-density expan-
played. In Sec. lllA we give the thermodynamic formula sions are coherent with the semiclassical ones given in Ref.
that relatesf to f}° through the primitive of Ing,/p2*™8)  [8] for any value ofuc=pBugB,. (A semiclassical investi-
where p,, is the density in the plasma and™"® is the  gation in the limiting caseic<1 was made in Ref9].)
density in an ideal gas'®* in the MB approximation and
with the same chemical potentials. We select the relations
between the particle and loop densities together with a useful
diagrammatic representation of the latter oi8ec. Il B). A. Dimensionless coupling parameters
The first terms in thep-expansion of various intermediate dab f | id
objects are obtained readily in Sec. Il C. The explicit expres-, As ?nno%nche above, from nol\i\I/ on, we only cotBS| ?\r Sys-
sions for the ideal gas which plays the role of the referencéems or which statlgtlcs Is weakly quantum, L& et e

T ; : ean interparticle distance. As long as all particle densities
system are given; in particular, the covariance of paths asso-

’ . : . : —are of the same order, we do not distinguish the average
ciated with a particle only submitted to a uniform magnetlcdistance between anv kind of particles and the distance
field is derived in Appendix A by using three different meth- y b ane

between two particles of the same speciesThe de Broglie

ods. In Sec. Il D we investigate the strategy of calculations e .
more precisely. First, the expansion of the loop densit)}hermal wave_l_ength\a= '.Bh /m, is the am|_o||tude_ of the
uantum position fluctuations of a free particle with energy

around its noninteracting value for the same chemical potengf der 1 d son/ th I :
tial is performed in powers ot and of the loop densities. At of order 18 and soh,/a measures the average overlap o

the same time, the inverse screening lengttof the re- wave functions at temperature. A weak degeneracy of

summed interaction between total loop charges is expande‘ﬂJantum statistics is characterized by
around its Debye value at the first order in density. Then, by N <a. )
a recurrence scheme, we expand the ratidpa*M8 | «, “

and the loop density in powers of the particle densities. The ) o
general recurrence scheme is exemplified by the performandg’en the average thermal energy per particle at equilibrium

of its first step. In Sec. Il E, by anticipation of the result of IS given by Maxwell-Boltzmann statistics and is of order

the diagrammatic survey, we give the formal structure of thel/B- ) ) ) ]

low-density expansions for the free energy and for the den- Therefqre dlmenS|oanss coupllng parameters are defined

sity in terms of the first terms in the expansion of the loop 8S the_ ratios of average interaction energies and the order of

densities with degeneracy indicps=1 andp=2. magnitude 18. Inspect]on of the Hamiltonian shows tha’g
In Sec. IV we discuss the first part of the procedure,there are three dynammal parameters. For the Coulomb in-

namely, the scaling analysis in loop density of Mayer dia-teraction the coupling parameter is

grams. For that purpose we introduce a formal decomposi-

tion of the bonds in powers ok (Sec. IVA). For bonds Ble.e,| b,

entirely scaled by, and which are integrable at finite den- Poy=2—0 =72 3

sity, a mere Taylor expansion at large distances is used. The

dressed bond, which involves not ondybut also lengths that

do not depend on the density, is not absolutely integrable avhereb,,,=Ble,e,| is the two-body average classical dis-

large distances, and a more delicate and systematic expai@nce of closest approach for speciesand y (also called

sion in Fourier space is devised. The useful explicit values.andau lengthfor a relative trajectory governed by the Cou-

used in the following are derived in Sec. IV B and a proce-lomb interaction and with energy of ordergl/In the fol-

dure to determine the minimal order of any diagram in looplowing, we will use the notatiod’ instead ofl",, when all

density is developed in Sec. IV C. charges, are of the same order of magnitude as well as all
In Sec. V explicit contributions from diagrams involved densitiesp, . (Such a situation is compatible with the local

in the loop density,, ,(X) for p=1 are calculated and col- neutrality equation.The dimensionless coupling parameters

lected in order to exhibit partial derivatives with respect touc, and ug, for the magnetic interactions are equal o

some densityp,. The purely classical terms are derived in times the quantum energies associated with the orbital mo-

Appendix B. Thus we get the final formula exhibited in Sec.tion and the spinorial precession in the quantum level with

Ic. lowest energy, respectively:

Il. MAIN RESULTS
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1 The first term is the free-energy density of an ideal gas in the
Uca=BHBaBo=B5wca, (4)  absence of magnetic field and the second and third terms are
the paramagnetic and diamagnetic ideal-gas contributions in

where wc,=e,Bo/m,c is the cyclotronic frequencyg, e MB approximation, respectively.
=|B,|), while

VB _ sinhug, )
Usa:%uccu (5) Fload{pa tsah) =2 o "'”(sinr[(zsa+ 1)us,]
(12

because the spinorial frequency is half of the cyclotronic ongng
times the Landdactorg,, .

The coupling parameters depend on the fundamental con- i
stants and on the thermodynamic parameteasidp for the BEYB((p. e =S p |n(5'”h’0a>_ (13
Coulomb interactionT and B, for the magnetic case. When diattfarTcall Ly Pa u
the density is varied, the length scale that measures the col-

Ca

lective Coulomb effects, namely, the Debye lengih The volume magnetization is derived from the density of
E[4W,32apae§]*1/2, must be introduced. Up to a numerical free energy by the formula 1= —df/ 9B, at fixed densities
factor, and fixedB. For the ideal gas in MB approximation
a 2
Fay:x g ' (6) Mi'\éIB: _2 pouu“Ba[gaSaBSa(zsauSa)—’_L(uCa)]v
Thus, according to E(3), (14)
r<leb, <a<ép. 7) WhereBsa is the Brillouin function of ordesS,, ,
On the other handi¢,, is linked to a length ¢, that depends 1 X X
only on B, (and not on the density Bsa(x)= Z—Sa[(ZSaﬁ— 1)cot){ (2S,+ 1)2_Sa) —cotl-( ZSQH
1( xa)z 1\, ® (19
u 01:_ _— = = . . .
€ 2llcal  2Re, andL is the Langevin function. (x) = cothx— (1/x).

In Eq. (8 lc,=VAcl/e,By is the characteristic quantum
length (radius of “orbits”) associated with the first quantum - _ .
Landau level andRe,=mc&/Be?B2 is the radius of the For sets of densities that satisfy the local neutrality rela-
classical cyclotronic orbit of a particle with energy3l/As a 10N Za€4p.=0, we get

consequence

C. Free energy of a multicomponent plasma

BE(BApat.Bo) =B+ BT+ pfi252 4 o(p5?),
Uca< 1<:>)\a<|Ca<RCa . (9) (16)

whereo(p") denotes a term of order greater theh In Eq.
. _ (16), as in the following, the orders in density will be de-
In the present and following papers, we are interested imoted by braces, whereas the ordergkinwill be referred to
the low-density limit that corresponds to a regime of lowin parentheses. At order (and plnp), all effects are con-
degeneracy ,<a and weak Coulomb coupling, tained in the contributiorBf)y® [see Eq.(11)] from the gas
of independent particles in the MB approximation. In the
r<i, (10 : ; .
weak-coupling and low-degeneracy regime, the next contri-

P 312 i ; ;
whereas the interaction with the magnetic field is of anyPUtion is of orderp™= and it coincides with the classical
excess free energy in the linearized Debyeckl approxi-

B. Low-density regime

intensity. ;
In the absence of interactions, the Maxwell-Boltzmann™ation;
approximation is well defined. The Hamiltonian is reduced to 3
that of Pauli’'s theory. The volume free energy for an ideal Bf{a/z}:BfD: _ 2. (17)
gas with MB statistics reads 127
Bfi'\é'B(ﬁy{Pa}.Bo) Indeed, according to Paper |, the bare two-body Coulomb

potential is partially screened by collective effects over a
length scale<™ 1. x depends on the density and tends to the
Debye valuekp when exchange effects are negligible. We
stress again that the purely classical Debye free enéggy
+,3fm§({f>a Ucal)- 11 does not involveB,, in agreement with the Bohr—van Leeu-

=2 palIn[(2mY)*opa] = 1+ BTz {pa: Usab)
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wen theorem. Effects from many-body interactions beyondrom orderp? on. At ordersp? and p®?, the exact contribu-
the linearized mean-field classical Debye approximation totions arising from quantum dynamics and quantum statistics
gether with short-ranged exchange mechanisms appear onlyith interactions are

1 tanhu sinhu
{25/ _ _ _1\2S, + 21 Sa 2 Ca
At 72 (TVL Boellaniios TP e,

(417)\§)3’2J’ dr{—r|e PMeLe|r) (189

sinhuc, sinhu
SO Y2 ) %0, r|e PHar|O,r)
Uca uCy

1 .
- E;y [1+ﬂKDeaey]papyli|Lnoc[ f dr

r<rR

B, (Bee)?

2
+ zg(ﬁeaey)sm(KDR)} -5l ln3]ﬁ3( > paei)

r 2r?
T 2
—~ §[—1+c+2|n2]54,<D(2 pae‘;> (18b)
2 1 2 2 1 4
z 5~ 3 4|, < 6_—_ 3
+3Ci8 KD(; paea) (Ey p+8y| +3C2B K%(g paea) (180
1 e2 1 phc
T 32p2.3 Sa 2P 3 [3]
+ 24ﬁ ﬁ Kp ~ pama+ 6 BO KD; paeaL (uCa)u (18d)
|
where C=0.57725 ... is theEuler-Mascheroni constant. The bound and diffusion states are contained in the quantum
In the contributions from ordep? on, the magnetic field density-matrix elements.
appears through normalization factors involving, and The exchange effects, which are short ranged whether

Us,, through Hamiltonian operators, and through “diffrac- there are interactions or not, are not perturbed by any collec-
tion” contributions which are functions of thec,’s . H,, is tive effect at ordep?, while, at orderp®?, the bare contri-
the two-body Hamiltonian without the spin contribution, bution is only renormalized by a multiplicative factor arising
from classical Debye screening. On the contrary, the direct
term involves screening in an essential way from orefer
Indeed, the truncation of the matrix element in the direct
term (18b) ensures that the integral only diverges as R In
€.8Y (19 term which is exactly compensated by thedgiR) inside the
[ri—ry| braces; this truncation arises from the low-density limit of
the screened bonds in a natural way.
For two particles of the same species, the position of the The constants in Eq18¢) read
center of mass, with masa1®, and charge &,, and that of 5
the relative particle, with mass1,/2 and chargee,/2, are C.—6 j”du[afCtamum)] 22
separable variables even whBg+ 0. The Hamiltonian cor- 1=0°7 0 1+u?
responding to the latter fictitious particle in the Coulomb

2 2

H,(1,2= ! Cap A ! B A
ay( a)=2_mlp1_z o/\ly +2_mzpz_z o/\l2

potential created by a charge2is hy,, and
1 e, 2 g2 , (= larctartu/2)]?> 1.
Prelo(Bo) = m—a( p— RBO/\r + (20 Co=—127 fo dum—uz)z ~ ¢! bridge & (23

For the center of mass the de Broglie wavelength is equal tWhereTbridgeG is an integral corresponding to a so-called
V2\, and ugc, has the same value as for each particle of*bridge” diagram with six Debye bonds, as defined in Sec.

speciesa. Thus(see Sec. [lICP? V D. The expressions fo€; andC, are more compact than
_ 5 those given in Refl3]. We notice that the analytical expres-
2,3( SiNfUcq —pH sion for T yiqqee s May also be written as the sum of formulas
dr(2m\%) (r,0|eFMaa|0,r) 9e 6 : ST
Ucy (4.2 and(4.3) in Ref.[3] with a global multiplicative factor

. 1/2 which was omitted in these equations. Moreover, the
sinhuc, B :
S —r|e Aheialr).  (21) most recent numerical values for these constants can be

=f dr(4m\2)%2 :
Uca found in Ref. [10], 2C;/3=a;=10.1347790..., and
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2C,/3=—ay,—a,, with a,, corresponding to the term and

proportional to Tbridgee and a,, to the other term in se?

C,; a,,=8.052814-0.000001 andh,,=1.7699+ 0.0001. E( = ,Uc) =2\

If powers of xp could be forgotten, the terms in E(L80 A

might be interpreted in terms of effective interactions be- . . .

tween three or four bodies according to their powers,ias The dlfferepce W.'th the formulas fCBOZ_O is that there ap-

in the case of short-ranged forces. However, the powers Ogear two dimensionless variablese*/) anduc, instead
; . L ' f one. With these notations, we get

xp come from(linear or nonlinegrcollective effects, and the

interpretation is not so simplén particular, there is a dress- BT B,p,Bo)

ing of nonlinear effective interactions by linear Debye

bonds)

The term (18d), also called the diffraction term in the
absence 0By, is a quantum dynamical effect due to the fact
that the long-ranged Coulomb potential is only algebraically
screened. This term vanishes at orﬂélbecause of the local +pln sinH{ (2S+1)ug]
neutrality relation. It can be decomposed into a part indepen-
dent fromB,, plus a correction which involves a generaliza- 25 2 5 tanhug
. . . . — — 1
tion LE(x) of the Langevin function that appears in the 2m(=1)TpT 1+ Brpe ftani (25+ 1)ug]
orbital magnetizatior{14) of a gas of independent charges.

LB(x)=L(x)—x/3 behaves as x3/45 whenx goes to zero. X N3E(— Be?/\,uc) (26b)
Thus the correction to the diffraction term that is due to the

magnetic field is proportional t82 when B, goes to zero, —2mp?[ 1+ Brpe®IN3Q(— Be’/\,uc) (260
whereas it goes to a constant in the limit of strong fields. The
diffraction term may be expressed in terms of the plasma
frequencies,,=[4me%p,/m,]Y2 which are related to the
dynamics of the center of mass.

All thermodynamic quantities can be obtained from the T 1 2
free-energy density. For instance, the press@ére —f + B kpp e’ 3 (1+IN3—2In2)+ ==+ o7
+2,p,9fldp, has an expression similar to that fotip to (260)
order p>2. On the contrary, the expression of the volume
magnetization M= — 9f/dB, requires a detailed spectral T Bh? -
analysis, which is far beyond the scope of the present paper. + 3 m Pe
The diamagnetic and paramagnetic magnetizations of the
MB quantum ideal gas are renormalized and coupled by in- +0(p°?). (269
teractions and quantum statistics. In H458 the term
p’tantug, /tanH (2S,+1)us,] is the sum of the squared den- The expression for the pressure has an analogous structure,
sities of particlesy in the 25,+ 1 spin states in the absence as in the case of the multicomponent plasma.
of Coulomb interactions, and the combination of exchange Up to orderp®? the result for the OCP is similar to Eq.
and direct density-matrix elements in position space is linked16), apart from the diffraction term, which does not vanish
to the origin of ferromagnetism. at order p®> and reads (4/3)(BhedBg)p?LEl(BugBy).

The origin of the diffraction terms for the OCP may be
viewed as the sum of two contributions. First, there is a
D. OCP free energy contribution from moving particles as for a multicomponent
plasma, but in the latter system the term of orgéis can-

The forml_JIas for the OCP are derived in Sec. VI _from celed, because all species move and obey the neutrality rela-
those established for a two-component plasma by using thtrf!on Second, there is an extra contribution at orderthat
following procedure. First, the mass of one given s,peciescom'(_}S from ,the expansion of the direct quantum t€
goes to infinity; then its charge vanishes as its density beE) . . 1p d 2 wh ticl q f ) mz
comes infinite so that their product is kept constant and en,[—e %e_n spec_|e_3 b al? wen g o |g/2e Sh ° Spelqes_ are
sures global neutrality. urned into a rigid backgroundAt order p™“ the coupling in

We introduce a generalization of the standard notati@ns € is O.f high‘?f prders and the contr?b_ution froQu, Qisap—
andE used in Ref[7] pears in the limit wheren, goes to infinity and, vanishes.
' Besides, in regimes of low degeneracy and weak quantum
Be? dynamical effects ati-= BugB, fixed, the expression of the
Q( - T,Uc) OCP free energy can be expanded with respett toecause
the OCP has a well-defined thermodynamic limit even with

sin
u

hJcJ dr{—rle Phelr). (25)
C

=p{In[(2m\2)¥%p]— 1} + pln( si:mc)
C

T 127D

sinhug ) 1 (269

_ gﬁ3p286[1+ﬂKDe2]ln()\KD)

1 2
1+ = Bkpe?|| 1+ — LBl (ue)
2 Uc

1 2232 inhuc ~phey MB statistics. The exchange d_ensity-matrix element in posi-
=mFLIm fr<Rdf (47\°) u—c<f|e relr) tion space vanishes exponentially fast whemoes to zero
- [8,9,11. According to Ref.[8], in the semiclassical limit,

ge?  g%4 2w 3R valid for any strength of Coulomb and magnetic couplings in

-5 ?,83e6 In(T +C ) (24 a regime of low degeneracy, the quantum term of lowest
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order in# in the free-energy density is the contribution from value xp in the contribution from interaction bonds for loops

the MB gas of independent charges, which is of ogglethe
interactions are involved only in the next-ordgf term,
which is exactly proportional tp? for any density[8,9]. We
have checked that the first two terms in thexpansion of
the exact low-density free energy up to orgéf (valid for

with p=1.

Second, our basic formula for the derivation of the free
energy reduces the problem to the identification of partial
derivatives with respect to the particle density in the expres-
sion of the diagrammatic expansion of the density around its

weak Coulomb coupling and derived in the present paperMB value for an ideal gas. In the other Mayer-diagram
coincide with the first four terms in the expansion of the method[2—4], the free energy is related to the integral of the
exact semiclassical free energy up to ortiér(valid for any internal energy for a coupling parametgrwhen g varies
Coulomb coupling and given in Refi8]). In particular, the from 0 to 1. This integral is expressed in terms of the dia-
contributions of ordep®? in the low-density expression can- grammatic expansion of the particle correlatidftines a
cel each other at ordér?, as they should. Coulomb interaction The difference in the starting formula
has three consequences. First, the diagrams to be considered
in the diagrammatic expansion pfare less numerous than

in the expansion of the correlation. Second, the identification

A few comments may be made about our method. In theof partial derivatives proves to be more elementary than the
absence of magnetic field, pioneering work about the derivasubtle integration over the coupling paramegeand the de-
tion of the free energy was achieved by the method of effecvices needed to obtain an explicit result only in terms of
tive potentials[7], and an exact analytic expression up tomatrix elements at the considered value of the coupling,
orderp®?is given in Ref[1] and derived in Ref§2—4]. Our  namely,g=1. Third, from a practical point of view, the ne-
method, which has various similarities with that used in thecessity of collecting various contributions as the sum of the
latter references, allows us first to retrieve the previous redifferent terms in the derivative of a product of functions is a
sults and to study very straightforwardly, and to our knowl-good guide to avoid numerical mistakes. Indeed, the global
edge for the first time, the differences that originate from thecoefficient 1/2 that is missing in Eqét.2) and(4.3) of Ref.
magnetic field. Indeed, as already stressed in Paper |, tH8] and which comes from a symmetry factor must be taken
presence of the magnetic field is entirely contained in anto account in the analogous part of our calculation in order
phase factor incorporated in the generalized fugacity of eacto recognize a sum of classical “bridge” contributions as the
loop in the path integral formalism. Moreover, in the low- derivative of a bridge function times a function of densities
density limit, calculations can be performed explicifin ~ andxp . Nevertheless, we stress that the existence of the two
terms of matrix elements of a two-body Hamiltonjabe- methods is a good means for checking analytical results de-
cause they involve the covariance of Brownian paths of infived from rather long procedures.
dependent particles in a magnetic field: the latter problem is
solvable and the covariance can be exactly expressed in |lII. SCHEME FOR LOW-DENSITY EXPANSIONS
terms of products of hyperbolic functions.

Two advantages of Mayer-diagram methods derived from
the path integral representation, and which are also used in In this subsection we derive an integral thermodynamic
Refs.[2—4], are the following. First, the origin of effects at relation between the free-energy density and the densities.
stake is clearly exhibited. Classio@nd quantumscreening  This relation provides a starting point for the calculation of
of monopole-monopole interactions is described by the bonthe free energy that is different from the procedure used in
Fe¢, diffraction effects resulting from the combination of the Refs.[2—4]. We start from the relation
long range of the Coulomb potential and the wave nature of
quantum dynamics are described by the bdétd', while a(Bf)
short-distance properties generated by quantum dynamics, P,
such as the absence of collapse of two opposite charges to-
gether with the existence of bound and scattering states, are Letpi{;ﬁ*,MB(B,{Ma}’Bo) be the density of particles of spe-

contained in the bonég. . : : idx N
Another interest of the Mayer-bond method is that a scaI—C'esa in an ideal gasS™ in the MB approximation at the

ing analysis allows us to select very quickly from which same inverse temperatygeand with the same chemical po-

order in density a diagram contributes. Moreover, half-t%r]*t'SIBS Ka- Acc_ordmg 0 _the v_vell-known _expressmn of
= which will be rederived in the following:

integer powers of the density appear in the low-density exf«

pansions in a quite natural way; they come through a length

scale arising from screening collective effects which is the Bﬂazm((ZW)\i)S/Z

only length depending on the density that is involved in the

three kinds of bonds. )
—In( - ) :

E. Comments about the method

A. Thermodynamic formula for the free energy

=Biq- 27

Bv{ﬂy})”& oz,Bo

sinhug, sinhug,
“sinH (2S,+1)us,] Uc,

The differences between our method and that used in
Refs.[2—4] are essentially of two kinds. First, in the loop
formalism exchange effects are not treated perturbatively
from the start but they are handled systematically. For inin Eq. (28) the densityp,, of the interacting system has been
stance, up to ordep®? the exchange contribution comes artificially introduced. .
from the loop density with exchange degeneragiesjual to Now let us consider another ideal g&¥ in the MB ap-

2 and from the expansion of around its low-degeneracy proximation at the same inverse temperatdrand with the

idx,MB (28)

a
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same densitie§p,}. Inspection of the expressidhl) shows Third, the expression at itself has a low-density expan-
one that the first term in the right-hand side of E2f) is just ~ sion, because, as shown in REE2],
equal tod(BfNP)/ap, . Subsequently,

1/2
, K=[K%+4wﬂ§ e’ f drpifflexcrm] . (39
BH(B.{p,}Bo)=BTid (B{p,}.Bo) - f '”(W)

where k3=4mB= e%p, is the squared inverse Debye

(29 length. In Eq.(34)

where  [In(p,/p®M8)  denotes the primitive of
idx,MB

o P
In(palpe™™") =9u(B.{py}.Bo) that reduces to the ideal-gas 27| . (r)= > pf D(X,) > S(Xx = X1 =) P p(Xp)
exchange terms when there is no interaction. The derivation p=2 1*=2

of the low-density expansion of the free energy is thus re- (35
placed by the calculation of the low-density expansiomp pf
around its value for an ideal g&&® in the MB approxima-
tion and with the same chemical potenti§}s.}.

is the part of the particle-particle distribution function arising
from the configurations where the two particles separated by
the distance belong to the same exchange cyclic permuta-
B. Basic relations valid at any density tlon.
The low-density expansions will be derived from the three C. First simple results at low density
following equations. First, the relation between the particle
densityp, and the loop densitigs, ,(X,) of speciesx with
various exchange degeneracgeseads In a low degeneracy and weak Coulomb coupling regime,
p. is of order pME  with p,~a 3 pdME
~exp(Bu,)/(2m\2)%2, and\ <a. Thus the small dimension-
less parameter that measures the order in the expansion is
expBu.,)~(\a)® and z, ,(X,) is of order pP, z, ,(X)
Contrarily to what was done in Paper |, in the present paper=0(pP). O(pP) denotes a term which is of ordes®,
we add a subscrigi to the loop-shape variabb¢ in order to  namely, whose density expansion starts at opdlerAccord-
keep track of the exchange degeneracy. ing to Egs.(31) and (32), the term inp, ,(X,) that is of
Second, the representation of the loop dengi(C) lowest order in density,, coincides withz, ,(X,) and
=pqp(Xp) in terms of diagrams where each internal point

1. Reference quantities

pa=p§1 P | D(Xp)Pap(Xp)- (30)

has a weightp(£) and where bonds depend on the loop Pap(Xp) =O(ph). (36)
density only throughk=47B2, ,(pe,)?SD(X,)pa p(X
takes ¥he fgrm J B2 (P TDXp) Pl Xp) Henceforth, the parf35) of the correlation that comes from
exchange effects involves has a low-density expansion which
Pap(Xp) = Za p(Xp)eXHI(La)], (31) starts at ordep?. (Indeed, exchange involves at least two
’ ' particles) Thus, according to Eq34),
where
k=kp+0(p>?), (37)
efra |\ Pyt : 12 .
2, o(Xy) = a wherexp is of orderp™< by definition. Another consequence
PP (2ma2)32)  p of Eq. (36 is that, according to Eq.(30), p,
) =[D(&z,1(&+0(p), whereo(p) denotes a term which is
sinf([2S,+1]pUus.) of greater order thap. Subsequently, according to E@3),
sinh(pug,) we retrieve that
% e(ie/ZﬁC)BO-J'gxp(T)/\pr(T)e—’BEig[(Xp)’ (32) p,= pig*,MB_'_ o(p). (39)
with the definitions given in Sec. 11l C of PaperJi(£) arises We notice that if the neutrality relation

from the Mayer diagrams in the presence of interactions and
involves powers ofp(L£)"«™ with 2n+m>0. When p
=1, z,4(&) involves no interaction. Thus, in the absence of
interactions, according to Eq31), the loop density forp
=1 in the quantum ideal gas with the same chemical potenwere not satisfied, then, according to the explicit low-density
tials {u,} is pfj(g)zzayl(gj. Since the value.w'o‘j'*"\"B of the  expressions derived below in Sec. IV, the expressiop of
ideal-gas density in the MB approximation reduces to thecalculated from the Mayer diagrams would not be equal to
contribution from the loops with an exchange degeneracy p'g*"\"B at first order in densityp. Since this coincidence
equal to 1, according to E¢30), it reads must happen in the weak Coulomb coupling and low-
degeneracy limit, the Mayer diagrams must be calculated
id*,MB _ J’ D(§2,4(8) (39 with the_ constraint(39). (Subs:_aquently, the i_deal gg&'d
a all S/ defined in Sec. Il A also satisfies the neutrality relation.

> €,pa=0 (39)
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2. Explicit results for the ideal MB gas coV’(s,s;Bg)=co y(S,S’;BO)
The explicit analytical results in the case of the ideal gas 1
that will be used are the following. By=0, ug,=0, and =—————coshi(s—s')uc,]
z,1(&) is independent frong. Thus, according to Eq$32) Uc,Sintuc,
and (33), p'%*™® reduces to X sintinf(s,s e, ]
eBta X sinh{[1—sufs,s’) uc,} (47)
paMB(Bo=0)=(2S,+1)———>. (40)
(2mr3)° while

WhenBy#0, us,#0, andz, (&€ involves a phase factor CcoVyy(S,8';Bo) = —coVjy(s,S';Bo)
arising from the magnetic field and the spin degeneracy fac-
tor 2S,+ 1 is changed into a paramagnetic expression. Thus — _isgr(s—s')

Uc,Sinhuc,
sinN[2S,+1]us,) Uc, ePta

Id* MB = Xsint|s—s'|uc,]siniinf(s,s")u
(Bo# 0=~ e EUEd H|s=s"[uc,Isintinf(s,s")uc,]
(41) Xsinh[1—sufs,s’)Juc,}- (48
In Eqg. (41) the well-known diamagnetic contribution to [In fact Eq.(48) will not be used in the following.In the
p'4*MB is derived by using the Feynman-Kaé-farmula, limit of weak coupling with the magnetic field, Eq&47)

does tend to the free motion expressi@®) and Eq.(48)
ie)\i 1 becomes cdf(s,s’;B;=0)=0, as it should.
f D(§)exp{%80~f §(S)/\d§(s)} According to Eqs(32), (38), and(41), the first term in the
0 p expansion op!Ph(X,) reads

=(2m\3)¥Xrlexd — Bhg, |1 >—ﬁ (42 PR (Xp) =2ZPH(X,) (49
where hBo'a is the position-dependent part of the Hamil-
tonian of one particle of speciesin the magnetic field,, pP—1 i p
p p g 0 z{p( X.)= p o a sinh(p[2S,+1]us,) (§|nm3a)
o 1] e P PP fSinn (28, + 1]us,)}? SINMPUs,)
hBo,a_ Z—ma D—EBO/\I' . (43)

sinhuc,\P ie e g fpx
X Uca ex Zh 0’ 0 p(T)

(See Appendix A for further details.For convenience’'s

sake, in the following we shall use the normalized measure
Dg,(£), such that/Dg (£) = 1. According to Eq(42) AdXp(7) [exd — ,BE”"(X,,)]. (50)
) 1
D, (§)= D (g)eliearul2io)Bo fo HINdE (44 D. Effects of exchange and interactions
Ca

1. Double-stepped scheme
Contrarily to the case of free motion, the covariance in the

The low-density expansions are performed in two steps.
presence 0B,

The first step will be called loop-density expansion and de-
noted bypeo, €Xpansion. The integrals corresponding to the

covfw(s,s';Bo)Ef De,(H[&9)1.[&")], Mayer diagrams with weight(£) are expanded in terms of
powers ofp(L) and «. Indeed,« is the only length scale
=COV,,,(S,S';Ucy), (45)  through which the Mayer bonds depend on the densities and

x vanishes with the densities. The order in loop density will

depends on the considered species wheand v are indices be denoted by, and we use the convention that each
of coordinates in the plane perpendicular to the direction ofength scalex deflned in Eq.(34) gives a contribution that
By, because the coupling with the magnetic field depends ostarts at Ordelp|10/c2)p Thusn may take half-integer values.
e,/m,. Properties derived from symmetry arguments havelrhe diagrammatic survey and the scaling analysis performed
been displayed in Sec. VC of Paper |. The values of then Sec. Il will show that

various nonvanishing covariances are calculated by three dif-

ferent methods in Appendix A with the following results. In P(L) =24 5(Xp: Bra)exd Ied(pe,)

the z-axis direction, the motion is still free, and {1} (312
+J Ioop(xp)"_:J Ioop(xp)] (51)

cov,(s,s’)=inf(s,s’)[1—sufds,s’)]. (46)
where Jamop(xp) is of orderpIoop In the following, the

On the contrary guantities denoted byloop(xp) will always refer to quanti-
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ties that are exactly of ordesy,,, and which are not inte- D(&)z, 1(&)

grated over the shapg, of the loop. ~——aems  —Dg,(8)- (57)
In the second step, we turn to the expansions in terms of Pa

xp and of the quantum particle densitipg. For that pur- ich, MB

idx,MB
pose, p,/py

degeneracy values 1 ang,, respectively, in terms of the

p,’S; simultaneously the loop densities, namely the
Z,5(Xp)'s and thed!,,(X,)’s, are expanded in powers of

the particle densitiesp,. When the term of order
[exp(Buy) P in p is known, we can calculatg, (X)),
with 1<p’<p+1 up to ordepP*. Indeed,p, ,/(X;) con-
tains the multiplicative factoe, ,/(X,) that starts at order
pp' by a term pi‘f;},(xp,) that is exactly known and the
J(X,) have to be calculated only up to ordpP™ 1P’
which is lower than or equal tpP. As shown below, we get

nzl ‘]{arj{czijp(xp) = nzl Ji”’z}(xp), (52

wherefi"? is a term of ordep™?, and
Zap(Xpi Bira) = pEp(Xp) + 2 205 (Xp). (59

pPL(X,) is given by Eq.(50). In Eq.(53) the jump in pow-
ers from pP to pP*! is determined by the fact thas,
=p™MB+ O(p?), as proved just below.

We notice that the summation over the species indices

and k are expanded around their low-

Thus, according to E¢30), the contribution top,/p,,
from the loops withp=1, for which E';;"(g) =0, is the inte-
gral of

D(g)pa,l(g) _ eJ{1/2}

idx,MB
a

(cDg (£)ella @ +37%@ L o(p?),
0
(58)

where we have used EQq$36) and (37). Since the low-
density expansion op, ,(X) starts at ordep® , Egs.(30)
and(58) lead to

pa=pid* MBI €1 0(p2). (59)
Equation(56) is derived from Eqgs(58) and(59), while Egs.
(55 and(59) imply that

_ idx,MB

Pa=Pqa 1+EezKD +O(P2)

> (60)

On one handp, »(X,) may be calculated readily up to
order p®? according to Eqs(50) and(51) and to the simple
form of J1¥2(pe,), and we get

1
PadX2)=pe 5l 1+ Beokn]Egana(X2) +O(p?), (61)

and the exchange degenergryo not increase the order in with
p(L) and « of a given diagram. These summations may at

most cancel some contributions, in which case they may in-
crease the order in the loop densis already discussed in

Sec. Il B of Ref.[3]).

2. Useful property
A property that simplifies explicit calculations @f ex-

E*  (xoye tanhug, (sinhuc,|?
excna X2) = Matani(28 + 1jug,)| e,

w @li€/210)By: (5Xa(7)\dXo( 1) o= BER(Xp)

(62

pansions is the following. As shown in Sec. V B, the only Indeed, by combining of Eqg50), (51), and(59), we get

contribution of orderp|10’§p in J(L,) reads

1
3o Pes) = 5 B(Pey) x (54)
and is independent froX,. According to Eq.(37),
{12 1 2
J (pea)zzﬁ(pea) KD (55)

which is the value 082, (pe,) whenx is replaced bycp .

3. Starting point of the recurrence scheme

The recurrence scheme may be started as follows. The

fact thatJi¥?(e,) is independent frong implies that

D(&)pa1(8)=paDa,(&+0O(p?). (56)

Indeed, we first notice that Eq&32) and (41) and the nor-
malization(44) imply the relation

pa,Z(XZ)

idx,MB
Pa

1 (U2 e (12
= 5pae’ e TITEIEL, o (X2) + O(p).

(63

According to Eqs(30), (55) and(63), the contribution from
loops withp=2 to p,/p'®* M reads

a

ZJ' D(X2)pa2AX2)

idx,MB
Pa

“Pa

1+ EﬂeiKD E*+0(p?).
(64)

We have seE},=[D(X;)Eg,h.(X2) wherer is the relative

position of the particles in the loofE? involves

2
f D(xz)e(iealzﬁc)Bo-j x2<T)Adx2(r)e—ﬁEgt<x2)
0

=f dr(27A2)3(r,0/e PHaq|0,r), (65)
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whereH,, is the two-body Hamiltonian without the spin
contribution defined in Eq19). In Eq.(65) we could choose
r,=0 andr,=r, because the left-hand side of E§5) is

F. CORNU

PRE 58

3
Bi1/2 = o
127

a

(70

1, 9
EIBeaKD_@

invariant under translation of the loop position. The right-is the opposite of the derivative of the Debye free energy.

hand side of Eq(65) may be reexpressed in terms of a one-

body Hamiltonian thanks to E¢21).

On the other handy, 1(£) may be calculated up to order
p%2. Indeed Jj3d, (8 +I'F%(&) can be expressed explicitly
in terms of the densitieg,, by using Eq.(56) and the equa-
tion

pz
K=Kp+ 276, eiK—“E;+0(p2). (66)
@ D

Equation(66) is derived from Eqs(34) and (61).

E. Formal results up to order p®?

1. Free energy

A straightforward low-density expansion implies that, af-

ter expansion of the exponential in the generalization of Egs.

(58) and(63), an integration over the loop shapes gives

Pa o alpiin)
PE*'MB _pgl ngo App "(eq), (67)
where the indexp refers to the integral§D(X,) ... where

Al comes from; for instance Af"%=3("3(e,), Al
= [Dg,(§IN(&), AP?=Dg (§IT?(9, AL=p,.EL,
and A2 =[3112(2¢ ) — J1V2(e,) 1p,E: WhereE* is de-
fined in Eq.(64). A reexponentiation of the expansi@d67)
leads to
In(
p

Pa | _ " 2}
id*,MB)_nZl Ba (68)

23

where BIY2=All2  BL- AN 4 Al and BI¥2=Al32
+A{23/2}_A{11/2}A{21}_ More explicitly,

BEIIIZ}:J{UZ}(ea)' (69@

Bl = f Dg,(§JIM(+p,EL. (69b)
B{¥4= f Dg, (53 (H)

+p [V (2e,)— 231 (e, ) JEL. (690

As a consequence, in order to calculate the free-energ

density up to ordep®?, we have to compute the loop density

only up to orderp®? for p=1, while the contribution from

Moreover, at ordep the contribution to Ing,/p9*"M&) from
exchange effects given by E(9b) is also a partial deriva-
tive by itself,

J (1
BUtna=PaEr =@( §2y P ) : 71

2. Loop density

The p expansion of the loop densitigs, ,(X,) will be
useful in the discussion of Paper Ill. By inversion of Eq.
(68), p'¢*"M® may be expressed in terms of tpg’s, and

insertion of this expansion in Eq&8) and (63) leads to
D(§>pa,1<§>=paDBO(§){1+J£3><§>— f Dg,(£)3(£)
—poEa (&) - f Dg,(£)37(¢)

—paﬁeiKDEZ] +0(p?) (72

while p, »(X5) is given up to ordep®? by Eq. (61).

IV. SCALING ANALYSIS IN LOOP DENSITY
A. Formal scale decomposition

Since the bonds introduced in Paper | depend on the den-
sity, a scale decomposition is introduced in order to deter-
mine to which orders irp(£) and « a given diagram con-
tributes. Similar principles are used in the decomposition
chosen in Sec. VD of Ref2].

We first notice that in the simple diagrams which we will
have to consider, all terms that involve an odd number of
derivatives with respect to disappear after integration over
X. Indeed, every such term originates from a large-distance
expansion of a functiori, and it takes the forng(X)[X],Ll

. --[X]Mnaﬂl ,,,,, Mnf(r) whereg(X) is invariant under rota-
tions of X (while Oy ar denotes a derivative with respect to
the components[r]ﬂ1 and [r]MZ). Since the weight

D(X)p(X) is invariant under inversion oK and is short
ranged with respect to the extent|of|, the integration over

X may be performed first and terms with an odd number of
components oK are canceled. Thus terms with an odd num-
ber of derivatives vanish in the absence as well as in the
E/)resence of the magnetic field.

1. Bonds entirely scaled bx

loops withp=2 has already been taken into account up to For bondsF, such ag=°“andF“", that are entirely scaled
order p*2. The scaling analysis of diagrams in terms of thePY « the scale decomposition takes the very simple form

loop density is presented in Sec. IV and the low-density ex-

pansions themselves are given in Sec. V.

We already notice that the terms of orgéf?> andp con-
tain obvious partial derivatives with respectdg. Accord-
ing to Egs.(699 and(55) the term

F(r;x>=n§0 FM(r; k) (73)

with
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FO(r: )= "EM(r/ k). (74)  Equation(81) holds thoughFc™™(x,X;) #T¢™M(x,X;) be-

causef dx g(|x|) ™™ (x,X;) is integrable at the origin. The

The dependence on the charggsande; will not be men-  yeason relies on two facts: eadi™" involves derivatives
tioned in the argument of the bonds. In the cas&Sf only  of ordern—1 of the functiong(r: «), and it is multiplied by

one power ofi is involved, functions that are invariant under rotationsrofLet us con-
. sider the integral ofj times any partial derivative of a func-
FC(r=x/x; k)= kF(x), (79  tion f, where botH andg are invariant under rotations. After
. integration over the orientation of any partial derivative of
with F*(x) = — Bj;exp(—x)/x and B;;= Be;e; . f with an odd number of coordinates gives a vanishing con-

In the case of°™, there appears a series in powerscof  tribution, whereas the derivative of ordep Qjives a term
This series is derived from the Taylor expansi&d F¢™ of  which is proportional ta\Pf times a tensor of rank® (This
F°M at large distances, though it does not coincide with thigesult can be easily derived in Fourier spaéear instance, a
expansion, as explained in the following. A term in the Tay-fundamental relation used in the following is
lor expansion of“™(r,X;) is denoted by

1
: | drathaten=s,.5 aradrnatar,
Tcm<n>(rrxj):,8ij jo dr X;(7)- V1" 1é(r;x), (76) 82)

with n=2 and Moreover, ¢ obeys the equation

okt Ap—k?p=—4m(r) (83
(77)

B(rix)= :
r and, subsequently, it can be shown by recurrence/tRétis
integrable at the origin. Thugdx g(|x|) T*™2P)(x,X;) in-
volves in fact onlygAP¢, which is integrable at the origin

even in the presence of the magnetic field.

Te™" s entirely scaled by thath power ofx and

cmep — . — nFcmn) )
Ex[Fe™(r=x/k,X;;x)] ZZ KT (x, X)), (78) > Bond .
In the case of the bong three kinds of scale lengths are
involved: the Iength$3|eaey| that measure the coupling with
b e X the Coulomb potential and, for each species, the radius of the
Tem2(x,X))=B;; f dTXj(T)~VX<—) orbits in the first Landau levelc,=\2%c/e,B, and the
0 X thermal de Broglie wavelength,. Thus, after integration
overr, the corresponding truncated two-body density-matrix
, (79  element depends on at most three kinds of dimensionless
parameters  Be,e,/\N A, Ni/1%,=Bliwc,/2=Uc,,
A A N2JI1Z,=uc,, and\ /N, =+m,/m,. We notice that, when
wherex is the unit vectox=x/x. More generally the term e,/m,=e,/m,, the motion equations can be decoupled in
T°™" is a sum ofn contributions each of which decays as two independent equations for the motions of the center of
exp(—Apxr)/rP whereA, is a constant and<p=n. In the  mass and a relative particle, respectively; thep=uc,, .
Taylor expansion th&™n s with n=3 are not integrable at On the other hand, the large-distance Taylor expansion of

the origin. Henceforth, the ter&*™"(x,X;) in the scale Fr reads
decomposition does not coincide with the teffi™" in the

H cm .
Taylor expansion of°™, Fr(ric)=>, T (r;x). (89
n=2

o0

For instance,

—X —X

zﬁij fopdTXj(T)'i

X

FEM(r=x/x,X;; k)= 22 K"FEMM(x, X)), (80 The first term

n=

2
with FE™M £Temn  The problems arising from the nonin- T<R2>(r;K)=£[F°°(r;x)]2=ﬁ¢2(r;x) 85)
tegrability of T°™™ at short distances can be solved by a 2 2

regularization procedure in Fourier space, but the latter is far ] ]
beyond the scope and need of the present paper. is integrable at short distances, whereas the higher-order

Indeed, in the following, we will use the property that, if terms in the Taylor expansion are not. In the following we

. . . . . . i i 2 2
g(r) is a function invariant under rotations and is regular atVil conS|d2er separatelyF°°]%/2, becaus¢ F*°]%/2 decays
the origin only as 1f< at k=0 and is integrable at large distances for

any finite x, while it is integrable at short distances for any
- - k. We define the truncated resummed bond
[ axathEm 0= [ axalxTmox,
(81 Fri=Fr— T . (86)
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The diagramgI are then replaced by diagraiis which are For instance/ - .gdxexp(iq- x) exp(—3x)/x3 arises in the

built as the diagram$l (namely, with the same topological contribution Of-|-<R3>e><p; this integral can be expanded in posi-
bondsF¢¢, F™ F™M¢ Fgr, and[F¢¢)?/2.

Frr decays as 1# at k=0 and is conditionally conver- f e 3 e 3
dx
x>«kR

gent for any finitex when integrations over angles are per- [e'97—1]
formed in the first place. As a consequence, the low-density
expansion off drFg(r,X;,X;) starts by a singular katerm —3kr
when k goes to zero, as detailed in the next section. Let us _f dr 5 [elxaT—1], (89
denote the low-density expansion of a functiéh by r<r r

E.p[F]. The fundamental formula that allows one to pro-

duce a scale decomposition of the Fourier transform of'here

Frt, Fri(k;xk)=[drexdik-r]Fg(r;«), reads

5 eiq'sz(sxR)+fdx

X x3

—nx

A(nkR)= f dxe (90

x> kR X3

fdre”“F(r)

ELD

= Iim[f drE p[F(r)e™*"]
r<R

R and(see, for instance, page 956 of REE3])
ik-r 1
B J,>Rd”:as“)e } ELD[A(nKR)]=A<°>(nKR)+an dr
r<R
(87

n? 1
—-«k*=| dr—+0((«R)%, (91
whereF ¢ is the part of the asymptotic behavior Bfthat 2 fr<R r (R, O

gives nonvanishing contributions to
where A®(nkR)=—4x[C+In(nkR)] and C is the Euler
constant.The Ik terms in the low-density expansion of
f drFadrexpiik-r) fdrFgy arise from theA®©(nkR)’s. Moreover, the second
=R term in the right-hand side of E¢89) reads

when R goes to infinity.(We notice that the notatioR for e 3x
the parameter that goes to infinity has nothing to do with the f dx [edX—1]

subscriptR in Fgr.) Since T& denotes the term withn X3

—1) derivatives with respect toin the Taylor expansion of 9+q 3 q

Frt at large distances [see Eq.(76)], T<Rn> is a sum of =—A47 In( 3 +—arcta76§ —1}.
contributions entirely scaled by". According to Eq.(87), q

(92

E plF ; . . . . . :
ol Fr(«d;x)] The integral in the third term in the right-hand side term of

. _ Eq. (89 is convergent at the origin and its low-density ex-
= lim J’ dr Ep[Fry(r)e" 9] pansion is merely obtained by expanding the integrand in
R Jr<R powers ofx. This procedure generates a series in powers of

B _ q«R that starts at orde®(q?«?R?). Another example of
+ J dx TE#9(x) €' contributions arising fromi §’®® is the contribution from
x> kR 4 . .
¢”. After an integration by parts,

+ 2 K”—3ELDJ dx TR x)e'd
n=3 X>kR

e74x —4kR
’ KJ dx =41 —4kA(4kR). (93
x> kR 4 R

X
(88)
The corresponding low-density expansion reads

where we have omitted the dependence on the loop shapes,
—4x

because it does not play any role in the formula. In B8) E f q e 4w 16 A AO(4xR
T4 denotes the purely algebraic part a2, T | f R e |T RO AK (4xR)
=Wj;, while T{®® denotes the part of{l that decays ex-

3 R p R Yy L O(k?R), 94

ponentially at large distances. TA&"®*® are not integrable
at the origin, but it does not matter because they appear onlyhere the first term vanishes wh&xgoes to infinity.
at distances >R. TW39 with n=4 do not appear in the

right-hand side of Eq(88), because their contribution van- B. Explicit value of the scale decomposition of gt
ishes wherR goes to infinity. On the contrary the contribu-

) ~ i g In the following, after determination of the diagrams that
tion from the T{"®® lead to expansions in powers of g

! ntribute to the first three orders in densiBg will only
kM(kR)™ . appear in convolutions. Thus the calculations will be per-
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formed in Fourier space, and we give only the explicit value 1 1
of the low-density expansions involving the Fourier trans- COEJ dSCoV,(S,S;Bo=0)= 5. (99
form of Fgt. 0
1. Short-ranged contributions Since Cov;A(S,5) = COV(S,5:Bo=0)
The expressions ¢fF¢¢]?/2 andFy given in Sec. IV A of 1
Paper | are expanded in powers soffor a fixedr with the S5C(ug )Ef ds[covi(s,s;Bg)—CoVE(S,S;By=0)]
result © Jo
1 (3)
EolFrrl(r.X; X)) = fr+ [0+ 0] “oug b (e, (100
(Bijpip))? (3] /wy — 3 3 . o
+ KPiP; Bij fT+—2 where L'%(x) = cotlx—(1/x) — (x/3) is a generalization of
2r the Langevin functiori(x) defined in Eq.(14). Finally, the
+O(?), (95) diffraction contribution from fdrFg; given by Eq. (97)
reads
with f; defined as
, fr<Rer Dg,(&)Bijv°"(r.&)
F2(r, X 'Xj):e—ﬁijv(r,xi X)) _ 1+ﬂij fipj B (ﬁijzpizpj) .
r
(96) = —,8”277)\ Cot s 6C(uCa) (101
fr is integrable at the origin and decays as®lat large  \yhere
distances. So its contribution §q g - - behaves as Rand
is compensated by the iR) that comes frony dr TSP, 1 5
The second term in Eq95) is the so-called diffraction term Cot = 5C(uC )— 1+ —L[g’](uC Y. (102
which is specific to the long range of the Coulomb potential, Ca

j dr Byv°™(r X)) 2. Long-ranged contributions
r At the orders of interest we have to consider only the
contributions fromi &39=Ww,, TP and TP to inte-

1(p 1
=Bij§f0dT[Xj(T)]ifKRdWW(F)- (97)  grals of the form

In Eqg. (97) we have only written the first term coming from iq-x

the large-distance Taylor expansionu$f". Indeed, after in- JX>KRde D(X)D(Xj)gi(X)gj(Xj)F(x,X;, X;) e,
tegration over the orientation of, the next terms involve (103

only the functionsAP(1/r) or [9?"/(9z)?"]AP~"(1/r), with

p>n, or[9?P/(3z)%P](1/r), with p=2. The first two expres- where the weight® (X;)g;(X;) are invariant under inversion
sions are equal to derivatives of the Dirac distribution, andf X;.

their integrals vanish, while the third function is proportional ~ Since W(r,X;,X;) is odd under inversion of each loop
to the Legendre polynomidt,,(cost) and gives a zero con- shape, the contribution fro; to an integral103) vanishes
tribution after integration over the angfebetween the axis  according to parity arguments. When we consider the case

andr (see Sec. V C of Papey.| g=0, another argument can be used. Indeed, after integra-
For loops withp=1, X;=\_,& and Eq.(97) involves the tion over the orientations af, W, gives a term proportional
covariance defined in E¢45) with the result to A(1/r), which is short ranged, so thff- gdr W;=0.
The exponential part of the large-distance Taylor expan-
1 1 sion of Frt can be written for then=3 and 4 terms as
f dr( ( f dscoﬁx(s,s;Bo))[&xﬁ ayy](r)
r 0 B
. L TRP= = B[ e S — 51+ B} 6 ¢l 3y #°
fO dSCOVZZ(S,S)) azz( ?) ] (104)
2 and
=—47| Cy+ 5 6C(uc )|, (99
3 TRY®P= = Bijl $eider baeet — bt |
where we have used E@82) with g(r)=1 andf(r)=1/ 1 ,3” 3”
together with the identity, - rdr A (L1/r) = — 4. In Eq. (98) + 85| 5 (5 + S| — = $*DReit 77 B

C, denotes the integrated covariance in the absence of mag-
netic field, (105
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,8,J¢e|ect and — B,J¢e|ec? are thenth-order terms in the

large-distance Taylor expansion 6fB;; ¢ejec; and F™ with
the notations of Sec. IVA in Paper 1) — ¢om

elect elect

- ¢>e,ect> involves a productX;] [ X;],, while qﬁe,ectand the
¢e‘,‘gct’s contain odd numbers of components of eitigror

X;. Thus, after integration over the loop shapes with weights
that are invariant under inversion &f, only the term pro-

portional to ¢3 in TE'®Ax) does contribute to Eq(103)

(and it has already been computed in Sec. lVwhile only
(6202, ¢oE),, andd? in TP give nonvanishing con-

trlbutlons to Eqg. (103). After integration over the loop

shapes, the contribution from the temj)fjgcpz is propor-

tional to

2 e~ 2«R
=2mwe Ridn

kR

AT 6niO(R) (106
=R 67+tO(xR) (108
while the contribution from the terrd>¢§gctinvolves
e (e
J dx A( >=27Te_2KR=27T+O(KR).
x> kR X X
(107

The contribution fromp* has already been given in E§4).

3. Relevant results

By collecting the previous results we get at oradér

j DBO(fi)J Dg,(§)Fr1(«0: &, &)

\2|C +35C(u )
Q; 0 3 Cai

1

—3x
fdx [€9*—1]+0(«),

:inaj(3")_27718ij{

2
Cot 5 0C(ucy)

2
N

BI]

3l (108)

where the last integral is given in E(2) and

Q (”“)‘R"L“xHKRdrf (&) | Dagetr

Ai (0)
—3r A (KR) 1. (109

Q (nK) may be written in terms of matrix elements by
usmg the Feynman-Kac-lttormula given in Sec. Ill of Pa-

per |. According to the value a&(®)(n«R) given in Eq.(91),
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sinfuc,, sinhuc,,

QM(HK)— lim f dr '

Row | JI<R Ucy, Ucy,

><(zm\aixaj)%o,r|e—BHaia1|o,r>—1

ﬁea-ea‘ (Belled)z
+ [ |
r 2r2

T
+?(Beaieaj)3[c+ln(nKR)]], (110

WhereHaia]_ has been defined in E¢L9).

Moreover, we shall need the following expression up to
order k:

| dr [ Dey&) [ Dy (&Pt g0

:inaj(3'<)+ K,Bijinaj(‘l-K)—(Zﬂ'ﬁij + K;:Bizj)

)

(111

2
Cot 3 0C(Uca,)

2
Cot 5 6C(Uca,)

2
X2

+>\§j
2
_K§7Tﬁi4]-+O(K2).

When we expand in powers ofxp, expression§108) and
(111) remain unchanged apart from the replacement ofy
kp at the considered orders. Thus according to &f1) the
low-density expansion of

| dr [ Poy&) [ Day(&Ferr g g0

does start by a logarithmic term which is equal to
(277/3)(,8eaeaj)3ln(3;<). The next term is a constant plus a

rest of orderx.

C. Minimal order of diagrams in loop density

The minimal order in density to which a diagrahb;
introduced in Sec. IV A contributes can be determined by the
following procedure. We recall that the powers' are
counted as power,s,’})/gp. The problem to be handled is that
the bondsFc¢, F°™M and[F¢¢])?/2 are entirely scaled by,
whereas the bonék is at the border of integrability and
decays as 1# over a length scale which does not depend on
the density [see Eq. (88].  For instance,
lim,_ofdrFg(r,& &) is independent fronk apart from a
Ink term. LetN be the number of internal points in the dia-
gram. LetMg__ (Mgem) be the number of bondsgy (F°™
or F™9 andM gcc be the number of functions®® contained
in the bondsF¢¢ and[ F¢¢]?/2. The integral corresponding to
a given diagram is proportional to

J

(112

N
il;[l dridxip(xi)

I Fzicp.
bonds
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= O fn @

FIG. 1. Diagrams that contribute from ordep? to FIG. 2. Diagram with a single bonfélgy. This diagram contrib-
In(p,/p%*™B). In Fig. 1, as in the following figures, a white disk utes from ordep to In(p,/p*V®).
represents the root point, and a black disk denotes an internal
point whose loop coordinates are integrated olgt.is the contri- ~ Fry.) The contraction process of the first step ends when
bution of orderp? from the “ring” diagrams which is given in  there is no moreé=gt bond. A given contraction disk may
Sec. V B. A wavy line corresponds to a boR&° and the symmetry  originate from the fusion of several points that are linked
factor of diagrams is not recalled in the figures; neither is the weightogether in the original diagrams by bonBgt and other
p(x) of every internal point. Thus the second diagram in Fig. 1kinds of bonds. Sinck, does not depend on the densiky,*
stands for (1/2Jdr [dxp(x)[F°(r,xa,x)1* is far greater that, in the low-density limit, so that, in the

integral (112), the bondsF°¢® and F°™ inside every contrac-

For the sake of pedagogy, let us first consider the casgon disk can be replaced by their values whervanishes
Mg_,=0. Then all bonds are entirely scaled kyand the and the result from the integration over all variables inside
scaling change=x/« is performed for the position of every the contraction disks, except their centﬂ%’, is indepen-
internal point of the diagram. Each integration voluche dent from the density. Consequently, at the lowest order in
gives a factor~* and is associated with a weigh¢£) that  density, the integrations over thi—(N{—1) internal
starts at the ordex®. Each bondF*® ([F°°]?/2) leads to a points of the original diagram that are not centef¥ of
factor x («?) and, according to Eq(80), each bond=“"  contraction disks lead to a contribution of order
gives rise to a series in powers gf the first term of which N- (N~ 1) ) ) )
is of orderx2 and may vanish after integration over the ori- Pioop - Moreover, at the first order in loop density,
entation ofr or over the loop shapes. Thus, sineds con-  each argument in any bond is replaced by the variﬁlél’é
sidered as a term that starts at orggg,, the first termin the ~ which is in the same contraction digr by £, in the case of
Ploop EXPansion of Eq(112) is of orderpﬂ,op with an argument which is in the contraction dlsk_centered on the

root poind. Thus thepy,, expansion of the integrall12)

N 1 tarts b tribution of ordgr” (Vs D
n(Me, =0)=-— EJF EMFCCJr M e, (113  Starts by a contribution of order,,; imes,
N1
We recall that the summations over the species or the ex- J [ IT dr®dyp(x)
change degeneracies or the integration over the loop shapes j=1 : A
may only increase the order in,.,. We notice that, since
any diagram in Eq(112) is connected and without ar(in- % H nglgkldislwi(l) LUy, (114
ternal or root articulation point(see Sec. Il C of Papej the bonds " disks/disks J

number of bonds is greater tha+1 the total number of )
points in the diagram. Since the number of bonds is alsdn Ed. (114) the bondsF Ggqis between the centers of the
lower than Mgcct+Mgme, Mpcet Meme=N+1, and contraction disks are products of borfs” and F°™. Some

(Mg, =0)=1/2. of these bonds decay at least as®ldver a length g<« !
when « vanishes.
Consequently, a second step is needed in the contraction
ebrocedure. Indeed, if we made the scaling transformation

In the generic casé/lFRTaéO. The integration over the

distance between two points that are directly linked by
bond Frt (and possibly indirectly linked by other paths of
bonds leads to a finite value whose limit whet goes to
zero is independent from the density, up ta ierms, be-
cause the distances that mainly contribute to the integrals

involving Frt are within a rangd, which is independent

from the density. So, as a first step, we integrate over all

relative distances between pairs of points directly linked by a

bond Frr. We callr{™) the positions of the internal points

[,](1) that are left over after this first integration. Since only

regions contained in a “contraction disk” with a radilig

and centered around either the positignof £, or around

ther(Ps (j=1,... N§iJ—1) do contribute to the integral

(112), the first integration step can be represented by a dia-

grammatical process. In this process, similar to that used in <

Sec. lll of Ref.[3], every pair of points that are linked by a

bondFg+ is replaced by a single poinfThe latter is any one

of the two points in the pair when they both are internal FIG. 3. Diagram which completes the direct contribution of or-
points, whereas the root point is chosen as the single pointer p from Fig. 2. in order to write it as a single partial derivative
resulting from the collapse when it is involved in the bondwith p,, .
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(a) ®) (o)

FIG. 6. Classical diagrams whose sum gives a contribution of
orderp®? exactly and is a partial derivative with respectatp of a
term proportional to (K3)(Z,p,e3)*.

FIG. 4. Diagram which completes the direct contribution of or-
derp¥?from Fig. 2. in order to write it as a single partial derivative \we notice that, ifM.__=0, there is no contraction process,

i RT
With pe- Nesr=N+1, and we retrieve Eq113. If M¢_ =1, the

number of disks is lower than the total number of poiNts
+1 in the original diagram minus on&= N jr. More-
over, since the diagram made with irreducible disks is still
connected, the number of bonds is greater tNagy i,—1;

riM=kx{" at once, then the integration overof any bond

that decays as ekpAxr]/r™ with m;=3 would lead to a

contribution ™~ with m;—3=0, whereas its low-density

limit is in fact of orderx® because it decays at least as®1/ . e

when « vanishes. So, in order to obtain the lowest order inS"Cce 1t IS lower thanMece it Meemr, We getMeeer
N +Meem i =Ngiskin— 1. Subsequently, the lower bound in

density, we have to perform a second step in which we inte- . ~
grate over the bondB ) that decay at least asr#/at Eq. (119 is greater than or equal tofl(Mpen/2)=1. If the

_ hi dure i val troduciNg diagram is sufficiently connected withyt bonds—and there
x=0. This procedure Is equivalent to intro “C'“@(ils)k NEW s no criterion abouMg__ for this phenomenon, contrary to
contraction disks. The integration over theNyg— 1] R

TN 1 | oo £ th disk hei _what was said.in Sec. llIC of Re[S]—.then all disks pol—

[Naisi— 1] internal points of these dis 5(%)(06(8)” €Ir CeN-|apse into a single one and, according to EL5 with
ters gives a contribution that starts at orgd%gigf Nask Thus  Ngiskin=1 angM ree=Meem=0, the order in density may be
the pioop €Xpansion of the integrall14) starts by the latter equal top(L)" as in the case of short-ranged interactions.
contribution times an integral that can be written as @#44)
with a superscript (2) in place @fL). Thecontraction pro- V. EXPLICIT CONTRIBUTIONS FROM DIAGRAMS
cess is repeated until there remain only bonds between disks ) i
that decay as L/or 1f2 at k=0. Let N ;; be the number We recall that, according t(_) Sec. Il C of Paped(L,) is
of irreducible disks at the end of the contraction procedureth® Sum of a constaryr (coming from some truncated con-
The pioop €Xpansion of the integrall12) starts by a term of trlbut|o_n of Coulomb rlng}? and qf aII_ unlabeled topologl—
orderp:\;;(NdiS“'"’_l) times an integral similar to Eq114) cally different conn_ected d|agr_arih>§ with one root pom_tCa _

P (i) ' cc ez and at least one internal point, and which are built with

Whegﬁ the bonds gjyqis are only single bonds*™, [F*] bondsF¢¢, F°™ F™¢ andFg. The topological rules for
or F*™. As discussed above in the cade =0, the change ihese diagrams are the following. They contain no articula-
of variabler =x/ for the (Nyisx ir— 1) positions of the cen- tion point, they remain as a single piece when all bonds
ters which are to be integrated over shows that the latteinvolving the root point are cut, and they obey the following
integral is of order p::)*op with n,=—(1/2)(Ngskir—1)  excluded-convolution rule: there can be no convolution

+(1/2)MFCC,irr+MFmC,irr1 where MFCC,irr (Mch,irr) is the FCC*FCCr Feo ch1 or FM& Fec,

number of bond$°¢ (F°™ or F™) between the irreducible Diagrams that should contribute from one given order in
disks. Eventually the term of lowest order in {hg,, expan- ~ density according to the scaling analysis but that prove to
sion of the contribution of the diagram is of order vanish after integration over the shape of the root p2int

will not be drawn. In Figs. 1-7 diagrams are put together

3 1 according to the minimal order in density to which they con-
N(Me)=N= 5 (Naiskin—1) + 5 Meee i+ Mpemjr - tribute and according to the nature of the effects they de-
(115 scribe. Moreover, diagrams whose sum gives one derivative

with respect to the density are collected in a single figure.

The species of the root poiut, will be called« in order to
simplify the notations.
A. Single bonds with no contribution
The contribution fromF°¢ to J(X,) disappears by virtue
@ @) (@) )

of the neutrality relation. Indeed, it reads

- - - — A7
FIG. 5. Classical diagrams whose sum gives a contribution ofJ drf d FCS(r p.e. pe.)=—p.e e
orderp®? exactly and is a partial derivative with respecigtpof a XPOOFTAT,PaCa PE,) Pafa™2 Ey Py

term proportional to () (2,p,€)4(S,p,€}). (116
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B. Diagrams contributing from the order p'?to In(p,/p* M)

Now we turn to the contributions from ordep,l(fgp to
In(p,/pS*M®). We calculated{{% for any p because we

need its value fop=1 andp=2, according to Eq(69a and
(690). After inspection, every diagram, but Fig. 1, proves to
be at least of ordep,qp. In other words, the term of ordar
that comes from Fig. 1{1%,(p.€,), is the only contribu-
tion of orderpigay t0 IN[p, o(Xp)/Ze p(Xp) 1.

With the same notations as in E(1), the contribution
I op of order plu2 from Fig. 1 is the sum of two contri-
butions. First, after splitting g into Frr and [ F¢¢]%/2, the

FIG. 7. The sum of these diagrams is analogous to that of diacontribution from the diagram with only one bofg; gives
grams in Fig. 6, apart from the fact that in the case of Fig. 6 thea term
numerical coefficient involves a one-dimensional integral with el-
ementary functions, whereas in the case of Fig. 7, the coefficient is

. . ; . 1 1
a three-dimensional “bridge” integral. f drf dyp(x) E[FCC]Z(r:paea 1pe’y):ZIB(paea)2K
(122

(a) ®

We notice that if the neutrality relatio(89) did not cancel . - :
the contribution fromF°, this contribution would be respon- 2ccording to the definition ({)f/z}recalled just before Eq31).
sible for the existence of a term of orge? that would not be ~ The other contribution taJj,;; comes fromlgr. As ex-

a partial derivative with respect fg, . In fact, such a term is Plained in Sec. IV B of Paper I 47 contains the sum of rings
not allowed, because, otherwise, would not be equal to ©Of Coulomb bonds plus the value that must be subtracted
il 1 (¢4

p'%* M8 in the strict zero-density limit, as explained in Sec. fom Frr in order to avoid any double counting. The value
lnc. of I,gr is given in Sec. IVB of Paper I. The contributions
The contribution fronFE™(r, x4, x) or F™(r, xa,x) van- from (1_/2)[ Fec)2 gndl g7 are entirely sczaled bx. The pigep
ishes after integration over the relative positioof the two ~ €XxPansion of their sum starts at ordgfs, by

loops,

1
‘]ﬁl)ﬁop( Pa€y) :E,B( paea)zK- (123
f drF™M(r,X)=0. (117

I gt @lso gives a contribution proportional io,
A first argument can be given in Fourier space. Since the

Fourier transform of°™ reads ,
jpadT pad T 1X ( ) X( ’)

— — = T): T
41 0 PaJo Pa 37 é

K2+ 12 pad7 1
(118) - jO E §[Xa( T)]Z]

- Ksiﬁ(paea)z[

ch k X)=— pd *ik-X(T)_l
(k,X)=—pBpae.e,| dr(e )
° (124

and is multiplied by a functiop(X) every moment of which plus higher-order terms ir?"** with n=2. The expression

is integrable, its contribution vanishes whéth goes to zero. 124) is derived from the propert82) and from
Another reason may be provided in position space. Accordg ) propertg?)
ing to Sec. IVA, Ny
1-e 7\ (1
f dx( - —) =2, (125

X

fdchm(r,x)=21 drTeneRrx) (119
&

1-e ¥ 1

and the contribution from eactf™?2?) is proportional to that f dx %( ” )r?ﬂ ;) =2m (126

from AP(exd —«r]/r). Equation(83) and the identity
(with implicit summation overw)
f q exp—kr) A4 (120
f[————=—
f K 1) [1-e™| [1-e*| (1
dxi | = + —|=—4m.
imply that fdrA ¢(r)=0. A recurrence allows one to show X X X X (127
easily by using Eq(83) again that, for anyp=1,

Since Fig. 1 provides the only contribution of ords};fﬁp,

J dr AP exp(—«r) o (121 the only term of ordep®? in J(X,), J?(p.e,), is ob-

r ' tained by inserting the expansion(66) of x aroundxp in
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(172} ; i
Jicop(1)(€) [Namely, by replacing by «p in the value(123 D(HIE2 (& + p.[112(2e,) - 202 (e, ) |E*
of J{¥2 (e,)] with the result exeh «

d (1
. - [3eroT i), (133
32 (pae,) = 1P (Paea) = 5 B(Pa€a) ip . (129 Ipa\ 2005 T

Equation(133) is the first example of the adequate combina-
By using the fundamental formula that will be used severation of different kinds of contributions in order to produce

times in the following: derivatives of products of functions that all depend on the
density.
2 The other term inl 3} arises from the replacement of
D_ n2mBe’kl 2, (129  in Eq.(124) for p,=1 by its leading low-density value? .
IPpq It reads
we get 1 5
'Ef/ﬁm: — K gﬁei)\i Cot 30C(Uca)
3
d [ Kkp
I3 (pe )=p§—(—)- (130 B 5 0 2
@ —_ 3 2y 2
&pa 127T = — gKD E( Zy C0+ §5C(UCQ) pyey)\y) .
Forp,=1 J¥2 is the classical Debye contribution. On the (134)

other hand, according to the formal study in Sec. Il E,

JW2(p.e,) for p,=1 is in fact the only contribution at or- In Eq. (134 we have used the index diff because the latter

der p2 in In(pa/pif*'""B), namely, 531/2}:\]{1/2}(%)_ Thus term comes fromp expansions of integrals involving the

the Debye term is the only contribution of orde?? in the bondF°™ and the existence of the latter bond originates from

free energy density and quantum corrections appear only é}ﬂe comblnatlpn of quantur_n_fluctuatlons with the resumma-

larger orders. tion of collective effects arising from the long range of the
According to the results of Sec. Il E, the next terms in theCoulomb potential. We have already called “diffraction”

p expansion ofJ(L£,) contribute to thep expansion of contributions the terms in E@111) that have a similar origin

IN(p./p**M8) up to orderp3? only through fD(&JM(g  In the p expansion off drFg(r,& .&).

with n=1 or n=3/2. For the sake of conciseness, we intro-

duce C. Diagrams contributing from order p to In(p,/pS*""®)

1. Single bond ky and first “direct” contributions

The diagram in Fig. 2, which reduces to a single bond
Frt, is responsible for another kind of contributions, called
“direct” terms in the following, because they involve the
Figure 1 gives no contribution of order, |%:0, while  diagonal matrix element of the two-body Gibbs factor. These
1132 is the sum of two terms. terms contain both short-ranged quantum effects, such as the
@) {32 existence of bound states, and a proper truncation that makes
3/20ne term inl(3)” is an exchange term that comes from they, o . ntrihutions from Rydberg and diffusive quantum states
p~“term in the expansion of aroundkp when itis inserted  ginite a5 a consequence of the screening of monopoles which
in the value(123) of J{jj% o pag.). It reads is valid both at the classical and quantum levels. The direct
terms appear from ordegs. The diagram in Fig. 3Fig. 4
will allow the completion of the direct contributions &z

= f D(&J(H. (13D)

Igl)i}xch: wﬁ2e§i2 eip";E’; = B xo eipiE’; _ (in Fig. 2) in order to obtain derivatives with respectgdg of
Kp“y 2 9pa"5 a term of ordenp (p°?).
(132 The contribution from Fig. 2 td Dg (£)J(£),

After inspection of diagrams, there proves to be no other

diagram that would give exchange contributions at order :j J' f

p%2 The term of ordelp has already been identified as a '@ drzy Py | Degl&) | Deg(Frrlla.4),
derivative with respect tp,, in Sec. Il E. According to Eq. (139
(690), the exchange terd!>? in In(p,/p"* MB) at orderp>?

a

is the sum of two contributions. The first one, iS given by formula(11l). I ;) may be decomposed as
[Dg (§ISA(H, originates from the term(3)%,  and may

be expressed afig/dp,,. The other one comes from the Loy =1 1 B+ 1 5+ 1 53 +0(p%). (136
loops £, with p,=2 and is written in Eq(69¢). After inser-
tion of the value ofJt¥3(pe,) in Eq. (690, the latter con- Terms of two kinds emerge at ordpr One is a direct

tribution may be written agdf/dp,. More precisely, term,
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J (1
Iiéidir:Z przy(akD):_(_Z p‘ypy’Q’;y’(BKD)
Y 24

Ip,\ 2

2
_ 2 _2p42
377,8ea

1 2
2 > pvei

pL 7
(137

Where the second equality comes from the fact that

w * (3kp) depends om by a Inkp term. The other term of

orderp is a diffraction contribution and may be viewed as a

partial derivative,

Cot 3 5C(Uca)

2
PyEyA y) }

2
PN 7)

(138

d,ﬁ_ 277,8[e A2

2
Co+ 3 6C(Uc,)

te,| >
Y

2
Co+ 5 5C(uc,)

a3

ap

a

X Z p,yreyr) .
Y

At order p*2 the bondF rt also provides a direct as well
as a diffraction contribution,

2
|{3/d}|r__§77-ﬁ4€iKDEy pyei—f—ﬁeaKDEy pyeyQZy(‘]'KD):

(139
1 2
)= — g xBBEINE| Co+ 38C(Uc,)
T2 2 2 2,2
~ 5 B’xoe€, > Cot 38C(uc,) |p,N5).
Y
(140

2. Diagram of Fig. 3 and completion of the direct term
at order p

The diagram in Fig. 3, namely,

fdr{FCC*(l/z)[F“]Z*F°°}(r),

contributes from ordep,q,,. More precisely, Fig. 3 has a
symmetry factor equal to 2 and

0 2
L Zy e’ip; pgf D(X>py,p(X>}
EB ea 2

K

A,
(141)

Jig) (&)=

where A=(1/2)f[da/(2m)*][$(q) 1 $°1(q) where G(x)
= ¢(X/ k; k) is defined in Eq(77). Since
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- 4
() (142
1+qg
and
1 ~ _ 2T rﬁq
§[¢ 1(a)= Farcta > (143

e find A=472/3.
After p expansion, the first term in

I 3= f D, (&a)J(3)(&a)

is of orderp. IE% completesl(zidIr in order to form a partial
derivative, and the next term i is only of orderp? ac-
cording to Eqs(36) and(56). More precisely,

(144

2 1 2
|{31}=|%3dir=§772ﬁ4ei—2 > Pye::}
DL Y

and comparison with Eq137) shows that, since there is no
other direct contribution at order,

j DBO(f)Jgilr}(f) = '%aﬁ | %dir

d

&pa( 52 Py Qyy, <3KD>>

(145

We notice that the diagrai™ (1/2)[ F°¢]2« F¢¢ gives a
contribution whosep,o,, €xpansion shoula priori start at
orderpfolg However, thep,30’ term vanishes after integra-

tion Wlth the measureDg_ (§a) and its contribution to
/D (£)I(£&,) starts only from ordepioop-

3. Diagram of Fig. 4 and completion of the direct term

at order p*?

The contribution from Fig. 4, namelyF°“*Fg *FC
starts at ordepfg’gp and, at this order, it only mvolveléRT(q)

at orderpIoop Figure 4 has a symmetry factor equal to 2 and

Ja(é)=5 ﬁ“ f [$(q)]?

(2m)3
X3 prespyey J D, (&) f Dg (&)
Y,y

XFrii®%(q,£&).
3/2

The point is that, aftep expansion, the surtfz)d,ﬁlﬁl)zjn is
a partial derivative.

The first term in thep expansion is calculated by using
Eq. (108 at orderp®, [[dg/(27)3][$(q)]?=2, and the
formula (92) in order to calculate

(146
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e 3 whereK is defined as
(2 f dx[e'dx— 1] 5~ =87[In3—2In2].
(147 q\?
KnEf dQﬁ arctar(z } . (153
The contribution from Fig. 4 at ordegs®2 may be decom- o [1+07]

posed in two terms
The sum of the terms arising from Fig. 6 at orgéf® reads

/
Iﬁfj}lr— 77,8292—2 Py, €y Qw (4kp) (148

|{3/2}_ ZK ﬂ |

a

a3 el

Kp

Each contribution from the two diagrams in Fig. 7 may be

expressed in terms of a dimensionless |nteglr§f|dgee
(149 =(1k) ! prigge s With the result

2
Co+ 5 5C(uc,)

ar2 2 2,2
S an= —wﬁzeaKDEy PyEIN Y-

After inspection of diagrams, it turns out that the sum of
the direct terms at ordep®? is given by Egs.(139 and

J |1 4
(149, 'ﬁ/>2}_24/36'vb”d966a{f<_%(§v: pyei) 1
f Dg,(£352(8) where
— 132 | {32
(2)dir (4)dir
dq”
(? 1 "
ZJ(EBKDE pyeypy,ey,Q;y,mKD)) Tonsee= | | =2 | S
a %
J 2 X$(q—a')p(a—a")p(a' —q"). (156)
apa( 36| 2 Py (150

. _ . . The integraITbridgeﬁcan be reduced to a triple integral by the
while the sum of the diffraction terms at ordp?’? arises  following transformation. In the same way as in REf4],

from Egs.(134), (140), and (149 with the result the integral is written in Fourier space in spherical coordi-
nates. Then, according to the method in R&B], the three
f D (§)J{3’2}—I{3’2} +|{3/2} 1132 functions that depend on relative angles are expanded in
Bo' &/~ diff dift diff = " (4)dift terms of Legendre polynomials. The addition and orthogo-

nality theorems for Legendre polynomials lead to

B 0 2
e K%Ey Co+ 3 5C(uc,) pEN2|. (151)
+oo 1
Both sums prove to be partial derivatives, as they should. Ib”dge 6= 3842 (2b+1) f du;—— Y
ui
D. Purely classical contributions at order p? = Qu(Xy) Qu(X19) Qp(X29)
The last figures contain purely classical diagrams which X Juld 2 J 1+u3

are exactly of ordep®%(£) and which do not involve short-
ranged effects. We have chosen to collect all diagrams whose (157
sum is a derivative with respect o, in one given figure.

Moreover, we already notice that diagrams in Fig. 5 Q'Ve avhere Q,(x) is a Legendre function of the second kind,

contribution to Inp,/p,""%) of the form (e®)%pe’ o (z)=(1/2)fL dtPy(t)/(z—1), and x;=(1+u+u?)/
whereas the terms arising from the diagrams in Figs. 6 and iuiuj )

have the samepe®)* structure. The detailed calculations are
displayed in Appendix B and the results are the following.

The total contribution from diagrams in Fig. 5 at order E. Free-energy expression
/2 . .
p¥%is By collecting the previous exact results up to orgéf ,
we find that, for sets of densities that satisfy the local neu-

JEEE —4’7TK1,85

(E p.e ) E P et il trality relation> e, p,=0, we get Eqs(16)—(18d). The dif-
Ty 7 ference, up to ordes™?, between the exact volume densities
(152  f of free energies with or withou, reads
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Bf(ﬂ!{pa}’BO)_ﬁf(ﬁl{pa}'BOZO)
=2 pa|n<

xfdr

1
- E;y [1+IBKDeaey]papy(ZW)\a)\y)Sj dr

sinhuc, (28a+1)sinhj5a) 1 (—1)%5

+ - N 1+ 21 2 21302
Uca ) Z.l p“|n<SInf[(25a+ 1)uSa] 2 = 25a+1 [1 BKDea]pa(4ﬂ-)\a)

(2S,+ 1)tankug, sinhuc,
tanr[(zsa—’_l)uSa] Uca

<— r|e*ﬂhrel,a(Bo)| r> — < — r|e*ﬂhrel,a(BO=O)|r>

Lh'lc“%(QHe*BHM(Bo)m,r)_<O,r|e*BHa7(Bo=0)|0,r>

Ca Ucy

1 Bhc
5 By (D2 PaCall(BusiBo) +0(p7). (158
In the direct terms, the difference between quantities Bight 0 andBy=0 automatically performs the truncations needed for
extended states, and the corresponding contribution at pfdisrthe same as in the case of short-ranged interactions.
The pressure can be derived from E(6)—(18d) by using the thermodynamic relatidh= 2 ,p,(df/dp,) — f. Terms of
the formFiPl=xpS, apParX " XPaBay o in fare just multiplied by (n/2)+p—1] in the pressuré®, whereas

terms with the structure (kn)FP in f lead to{(1/2)+[(n/2)+p—1]Inkp}FP in P. Eventually,

1
— _ 3
BP=2 pu= 5550 (1593

tankug, ,Sinhuc,,
tanff (2S,+ 1)us,]1 P4 uc,

1 3
— 52 (~ 1) 1+ 5 Broe]

(47Ai)3/2f dr<_r|efﬁhrel,a|r> (1590

sinhuc,, sinhu e.e 6.6.)?
: Cy(z”)\a)‘y)3<0’r|e_ﬁH“V|0,r>_1—|— Y_ g 4
e e r 2r2

1 3 ,
- 5% (1+ EBKDeaey)paPY'ilinw{ jKRdr{

27 1l 2 1 C 2
+ ?(ﬁeaeyﬁln(KDR)] ~ 3|3 +C+In3 33( > | 3752 ,84KD( > paej‘,) (1599
1 e 1 phc
T 32p2,.3 I 3 [3]
+ 16ﬁ B KD; pama+ 4 BO KD; paeaL (uCa) (159d
5 1 3 2 4 6 1 3 !
+C18°—| 2 pael| | 2 pyel | +CaBS | X pagl - (159¢
Kp a Y KD a
|
WhenBy=0, we retrieve the result given i]. procedure has already been tested successfully in the absence
of any magnetic field. In this case its results have been com-
pared with those of a direct derivation of the low-density free
VI. CASE OF THE ONE-COMPONENT PLASMA energy for the OCP through Mayer expansi¢m6]. More-
over, the classical terms for the OCP that are derived through
A. From the two-component plasma to the OCP this procedure in Refl4] coincide with those of Ref[14]
1. Limit procedure which are directly calculated for the OCP.

In the limit wherem, goes to infinity, the heavy particles

The free energy of the OCP is derived from the formulasya.ome classical becaus® always appears through the ra-
valid for a two-component plasmd CP) _by the prpcedure tio m,/A. The matrix elements involving species 2 can be

QYerived in this limit from the generalized Wigner-Kirkwood

infinity so that the positions of the corresponding part'desexpansions in the presence of a magnetic field of any inten-

are fixed; then its charge vanishes as its density becom : : : (0)
infinite while their product is kept constant so that globales‘?ty (see[8). Indeed, ifH,, is written aShBO*’/JFVra(r’/)

neutrality remains valid. This second step ensures that th\é’herehgo,y(fwvry) is the Hamiltoniar(43) of a heavy par-
fixed particles turn into a uniform neutralizing background.ticle of speciesy alone in the magnetic field, then in the
In this section, we will call p;,m;,e;) [(p2,Mmy,e,)] the  classical limit for the heavy particle, according to E§.2)
density, mass, and charge of the lijheavy] particles. The of Ref.[8],
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_sintuc, 2 lim { lim p1p,Q¥(Nkp)
mIITm C (2 y) €20 €2P2= "€1P M2
Y Y .
) = lim p1p2A12, (162
X(rylexp{ = Blhg, ,(r)) +V; (r)]}r,) ey 0| ezp,= €1y
=exg — BV, (r,)][1+0(%%)]. (160  with
sinhuc,
In the right-hand side of Eq160) r, is no longer an opera- A12=f dr (277A§)3’2u—
tor, butV,a(ry) may involve operators acting on the coordi- r<R 1
natesr, of the light particle. e.e
x(rle piareea|ry - 14 EE%2| 163

r
2. Straightforward limits

Whenm; goes to infinity\ , goes to zero as well ag;,.  with \y=JBhZ/m=limpy _..\1,, where\y, is associated
In this limit, the purely classical termd8¢) are unchanged, with the relative particle with reduced mass

and whene, goes to zero the summation overand vy re- fmym, /(m;+m,).
duces to the contribution from one species. The diffraction | order to study the limit ofA;, whene, vanishes, we

contributionsz(180) from the heavy particles, which are pro- e the expansion of Dyson equation up to omler
portional to\5 atuc, fixed, vanish while those from the light
particles remain unaltered. For light particles, the exchange 0 1 0 €€ 0)
term remains unchanged, whereas it tends to its classical e_Bh(BO)’l_Bfodse_ﬂ(l_S)hg;’l¥e_BShg°’l+ O(e3),
limit in the case of heavy particles. (164)
Since the variables of the center of mass and of the rela-
tive particle are decoupled for identical particles, even in thewherehgo)l and 1f denote operatorgin fact the small di-
presence ofB,, they can be separated. According to Eqg. " Bo )
(21) the exchange(direch term for two heavy particles Mensionless parameter is,=Be;,e,/a<1). According to
of species 2 is proportional to (sif/uc) times Eq.(42) and the closure relatlof\dr’[r’)(r’|=I(whereI is
(47r7\§)3’2(r’IeX[{—,Bh,e|,ﬂ|r> with ' =—r (r'=r). In the the identity operatgr the e, expansion ofA;, reads
classical Iimit,uc2 goes to zero, the term siu@zluc2 tends L 11
to 1. The exchange integrfitir( —r[ex —Bhye o]|r) indeed A= —ﬁelezf dsf drf dr{—,— -
vanishes. It becomes exponentially small whergoes to 0 r<R r r
zero; more precisely, this was shown for sni&jlin Ref.[9]
and for infinite By and in two dimensions in Ref8]. For
(rlexgd—Bhreol|r), the classical limit of the contribution
from the relative particle is obtained from E{.60 where
there is no particle of species and the role of specieg is ><<rf|e—ﬁshg)0),1|r)+o(e§)_ (165
played by the relative particle with mass,/2, chargee,/2,
andV(r,)=e5/r. Then the classical Boltzmann factor is re- \We setr’=r-+t and make a Taylor expansion of {1y
trieved, —(1/r) around I¥. After integration over orientations of
all derivatives eventually lead tAP(1/r) terms. Equation
(82 can be generalized to an integral over a finite volume

hg;),1| r')

sinhuc,
X(Zw)\f)w—u (rle"A1=s
Cy

sinhug, | 2 ith the resul AP(L/r)=0 for p=2, al i
im ) (2w (0rle ajory—e s, Wih e result, wdr AP(LIN) =0 for p=2, aready used i
mp— 2 ' ’ !
(167 . 1 1
A12=—,8e1e2f0 dsf<Rdr§E 00(8)9puu| + +0(ed),
r

By inserting Eq.(162) in the truncated integral of Eq18b) g (166)
and taking the limite, going to zero, we obtain that the
direct term for species 2 vanishes. with, according to Eq(42),

3. Direct term with two different species

2.\ 2 wsithclf dirt 120 -B(1-9)hY t
= By, 1|
In the case of the direct terms involving the two species 1 9u(S)=(2mh3) Uc, [t.1%(0le ot)

and 2, there is no separation of variables, but when species 2 0

becomes classical, an effective separation turns out through L0 (Olexd — Bh) 1[xu(s)1%|0)
. . —pbS —

Eqg. (160 where the gole of speme&_(y) is played by X(t|e™PMe10) = (O|exp[—,8h(°)]]|0)

1 (2) andVra(ry)=h(Bo)’1+ e,e,/r. By inserting Eq.(160) Bo:

into Q1,(nkp) given by Eqg.(110 we get (167
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wherexy(s) is the position operator in Heisenberg represendributions at ordep®? have the same structure in both kinds
tation at “imaginary time”s. According to the relation be- of systems. We notice that this section is a demonstration of
tween the path integral of a function and the average value dhe result

the corresponding operator in Heisenberg representation

(see, for instance, page 174 of REt7)), lim { lim p1p,Q%,(Nkp)
(Olexi{ ~ B 11x4(5)10) el
T €1
=\fcov,,.(s,s;uc,)(Olexd — phg)1|0), =h2p§§/32m—l 57 u—cll—m(ucl) . (170
(168

] ] ) 4. OCP free energy
where coym(s,s;ucl) is defined in Eq.(45). Moreover,

by using the identityfdrd,,(1/r)=—4m/3 (without any

|mp]|C|t summation over .the '.”de”“)’ we find a regult introduced in the calculations of the present paper differ
similar ~ to the diffraction term  (98) N from Q andE introduced in Ref[7] only by a multiplicative
Jdr/D(£)/D(&)Fri(r.&1.4), factor 1/(4m\°%) and an additive constant in the caseQf

According to the operator representation@f given in Eq.
+0(e3). (169 (110,

From now on, we change the notatiop;(m,,e;) into
(p,m,e). In the absence oB,, the quantitiesQ* and E*

2
Co+ 5 8C(uc,)

A12: Belezz W}\i

2
As a conclusion, in the limit where, goes to zero with Be ) 1 * 2 36
X ’ X _—— = —F] - T In
the neutrality constraint p,e,=—p1€1, p1pQlx(Nkp) Q( N Ue| = e Q7 (8xo) — 5 ARein(xol)
leads to a nonvanishing diffraction term whereas (172

e18,kpp1p2Q7(Nkp) disppears. Henceforth, in the case of

the OCP, the diffraction term is nonzero at orgé whereas  while, according to Egs(21) and (65), E(—8e?/\,uc)
this term does not appear in the free energy of a multicom=(1/4m\3)E*.

ponent plasma because of the neutrality equation for the den- In order to point out the difference arising from the pres-
sities of moving particles. On the contrary, diffraction con-ence ofB, we may write Eq.(26) as

(2S+1)sinhug sinhuc (—1)%*1
OCP, _ afOCP - 2y 3 2
Bf (Blp'BO) :Bf (ﬁ!poO 0) pln(SIHI‘[(ZS-I—l)uS] +p|n c ™ 2S+1 P A [1+BKDe]
o[ 2Sthtans oo oo E(— B\, uc=0 172
f@anf (25+ 1)ug (—pBeIN,uc) —E(—pe/\,uc=0) (172a
—2mp®\3[ 1+ Brpe?][Q(— Be?/\,uc) — Q(— Be’/\,uc=0)] (172b
2w Bh* 1 L)1
7 - E) 3
3 m P e | 1+ Z,BKDe ucL (uc)+0O(p°lnp). (1729
|
Up to orderp®?, the results with or withouB,, (see Ref[4]) B. Semiclassical limit for the OCP
are similar to those for a multicomponent plas(h&8), apart _
from the diffraction term(26e, which does not vanish at  In regimes of low degeneracy(a<1) and weak quan-
orderp? (see the end of the preceding section tum dynamical effects atic=BugB, fixed, the expression

We notice that the origin of the diffraction terms in the Of the OCP free energy can be expanded with respest to
method of Ref[3] is essentially the same, though it turns outPecause the exchange density-matrix element in position
in a different technical way. Indeed, the diffraction terms ofSPace vanishes exponentially fast whergoes to zero as_

a multicomponent plasma come both from bonds of the sam@iScussed above, and because the OCP has a well-defined
nature as our bonB°™ and from the integration df;  over thermodynamic limit even with MB statistics.

g, wherefy 4 is the value off ; when the Coulomb interac-

tion is multiplied by the dimensionless coupling parameter 1. Semiclassical regime

g. The latter integration ovey, with 0<g=<1, involves cal-

culations similar to those that we used to get the limit of the The system is semiclassical for any value of a given cou-
OCP, in particular an expression analogous to @65 is  pling if the length scale\y, beneath which the quantum ef-
used. fects are important is negligible with respect to the smallest
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lengthl that characterizes the coupling, whether the latter issver, at the same time the length, beneath which quantum
weak or strong. The corresponding dimensionless paramet@inamics is crucial changes from, to |, in the plane
reads perpendicular tdB, [8], because, when the magnetic field is
) very strong, the particles are in the lowest Landau level
t E(ﬁl) _ 173 while the radiud ¢, of the Landau orbits is negligible with
ae respect ton,, according to(9). Then the Feynman-Kac-lto
integral is controlled by the phase factor, whose amplitude is
There is no semiclassical parameter associated with the spioportional touc, and oscillates very fast, as discussed in
because the latter internal degree of freedom is intrinsicallyyef. [8]. In the plane perpendicular to the axis Bf, the
quantum. Landau orbits behave as heavy point particles with mass
Let us first consider a system with only one kind of inter- ¢jmes Uc,/taniug, that increases wittB, and only thez
actions. Then 4, may be chosen to be equal to the amplitudecomponent of the quantum fluctuations does survive.
A, of the quantum position fluctuations of free particles with  sybsequently, when both Coulomb and magnetic interac-
MB statistics at temperatufe. The semiclassical parameter tions are taken into account, a semiclassical regime shows up
tq, which measures the importance of quantum dynamicajor any values of the coupling parametdtsand uc, when
effects for particles submitted to only one given interactionthe four following conditions are met. If the magnetic field
at a given temperature may be interpreted as the ratio B, is weak (c,<1), quantum fluctuations appear over
scales smaller than or of ordeg,=\,. On the other hand,
:8qu(|) (174) according to Eq.(7), the smallest length associated with
Eth Coulomb interaction i$=b,, whenI'<1 andl =&y when
I'>1. Thus the system is semiclassical for any strength of

wheree (1) is the kinetic energy of the quantum dynamical the Coulomb coupling if bothn,<b,, and \,<&p,
position fluctuations with an amplitudewhich is the small-  namely,

est length characteristic of the interaction, whilg is the

average kinetic energy of free particles at equilibrium at tem- o

peratureT. & q(l) is derived from the uncertainty prin- E<Fw, (176a
ciple and the form of the interaction, while, in a low-
degeneracy regime, is given by the Maxwell-Boltzmann
expressiong,= 1/8.

In the case of Coulomb interaction, the two-body poten-
tial has no intrinsic characteristic length. When collectiveThese two inequalities are indeed satisfied in the semiclassi-
coulombic effects are taken into account, according to EQeg| calculations of Ref.9] which are performed in a limit of
(7), the smallest lengthassociated with these effects at tem-yegk magnetic field. On the other hand, when the magnetic
perature 18 is either the classical closest distance of ap-fie|d is strong, quantum phenomena in the plane perpendicu-
proachb,, (WhenI'<1) or the screening lengtl, (When |5r 1o B, show up over scales smaller thag,=lc,. Thus,
r>1). by changing\ , into I, in the previous argument and by

In the case of the magnetic orbital interaction, there is nq;sing Eq.(8), the semiclassical conditiori$76a and(176b
coupling between particles andis merely the intrinsic  pecome
length derived from the one-body interaction with the exter-
nal field. From the point of view of statistical mechanics, the o
orbital magnetic interaction is essentially quantum in its fun- E<Faa\/u_(:av (1779
damental origin, though the one-body problem may be ac-
counted for by classical relativistic dynamics. Therefore the
corresponding characteristic lendtlis chosen to arise from
guantum instead of classical dynamics; namely, we use the
characteristic quantum lengllk., in place of the classical
thermal gyromagnetic radiu’;, defined after Eq(8) and

qu

2 1

)\a<
r

a

(176b

aa

2 1

)\a<
r

a

Ucy . (177b

aa

2. Semiclassical and low-density limits

According to the preceding section, conditions for low
degeneracy, X/a)’<1, weak Coulomb coupling, and
weakly quantum dynamics at: fixed may be fulfilled si-
multaneously. In the semiclassical expansions of R&f.
[However,R¢, is the relevant scale for semiclassical expan-statistics is that of Maxwell-Boltzmann and dynamics is
sions of thermodynamic quantities, because then the refeweakly quantum for any strength of the Coulomb and orbital
ence quantities used in the statistical framework are calcumagnetic couplings: conditiond 763, (176b, (1779, and
lated with classical dynamics. Moreovaxr, /R, is equalto (177 are satisfied. On the other hand, in our low-density
the square oh ,/l¢,, as mentioned in E¢8), so that both expansions, which correspond to low degeneracy and weak
parameters increase with the intensBy of the magnetic Coulomb coupling regimes, dynamics is fully quantum and
field according to Eq(4).] magnetic coupling is arbitrary. Thus our low-density results

We point out that wherB,, (i.e., uc,) is increased, the may be expanded in powers 6f at uc fixed in situations
system becomes more and more quantimm, \,/lc, in-  where Eqs(176a and(177a are valid. Thus it is legitimate
creases, according to E@), andtg, maggets largel. How-  to compare the double expansionsgrand# obtained by

Ny |2
tqu,magE(lc_a) =2Uc,- (1795
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making eithers or p go first to zero when Eqg1769 and and
(1773 are fulfilled. In this section we omit the superscript

OCP inf in order to simplify notations. BAGf 52 (B.p,Bo)

First, the exchange terms are exponentially small when 1 w Bh? 5
goes to zero in the absenfel] as well as in the presence =p?| 1+ = Bkpe? |5 —e 1+ —L®(uc)|. (182
[8,9] of By. Moreover, the strict weak-coupling limit of the 2 3 m Uc

semiclassical formula for exchange effects coincides with th
first-order term in the low-density exchange contribution
(26b). First, we consider the strict low-density limit of the
result(26b). In a strict weak-coupling limit # Bxpe? tends

to 1 (the collective effects disappeand the latter exchange
contribution tends to

et us consider the semiclassical limit of the direct term
BAGfi55% . The# expansion auc fixed of the diagonal
matrix element for a particle with mass/2 and charges/2
in a potentiale?/r and submitted tdB, is given by formula
(5.2) of Ref.[8] whereu is unchanged ani? is multiplied
by 2. This formula gives the correction of ordkef/m at T

¢ 2(2fmn)? tantug sintuc 1 and u¢ fixed to formula(160) of the present paper. When
Bfexeri=p“(2V7N) @i (25t Dug  ue 2 Bo=0, it reads
J» " s, (47\2)3%(r| @™ PhrelBo=0|r)
X | dr{—r|e”F'elr)}+ 0O . 178
(—rle”PMer)+0(p (178 N e
=e P 1+ ——{ Bl V|=|| —2A| =
On the other hand, if we generalize the semiclassical formula 12m r r

(5.10 of Ref.[9] which is derived forS=1/2 and smallu¢ +O(HY). (183
to an expression valid for arfyand a finite value ofic, the
contribution from exchange effects to the free energy at finitayhen B, # 0, it may be expressed as the sum
density whervi goes to zero ati; fixed reads
sinhuc B
tanhug 1 sinhuc (477)\2)3/2u—c<f|e Phrelo|r )
tani (2S+1)ug] 2 Uc

Bf exci= pZeC(Z\/;)\)S

) hZﬁZeZ
=(47\2)¥%r|e PhelBo=o|r) + g FET ———
xfdr(—r|e*3hrel|r)[l+0uc(ﬁ2)]. (179 4m
! Jo (L] 1 4
In Eq. (179 O, (%#2) is to be understood as a term of order XL u)i Be?| V| = | =24, =1 +Oy (77).
C u r r

#2 times a function ofic which remains finite when goes 18
to zero.C is related to the short-ranged behavior of the clas- (184
sical pair distribution function and takes the many-body ef+ye recall that, by definitionl, 3! (uc=0)=0. By using
fects into account. In the low-densifyveak Coulomb cou-

pling) limit C vanishes and we get the announced result. 1\ 72 _ ge?r 1 1\12 —penr 4 €2
Now, we turn to terms of other kinds, namely, the part f drid,| ]| e = §f drivi—-f|e =33
fMB of f that is calculated with MB statistics. We show that (185

up to orderp®?:2 the p expansion of the semiclassical result

up to order4? coincides with thei expansion of the low- and

density result up to ordes®? First, we consider the double

expansion Wherelwe expand the free energylwith respept to f dr %M(l) e BT — Ej drA(E) e B _
then to#. According to Eq.(26) the low-density expansion r 3 r

of fMB takes the form (186)
fMB{=52( g , B.)— 5.Bg)—fyiB.p.B together with the definition24) of Q, the formulas(183
(B,p;Bo) pare(ﬁ p,Bo) = faia( B,p,Bo) and (184 lead to
=1053(8,p) + Aquf 5 "(8,p,Bo) se? se2
= 3 _—— = — i 3 e — =
Aquf{diffSIZ}(IBrpoO): (180 4o\ Q( X ,Uc 0) f!li]:]o[llﬂ)\ Q( N ,Uc 0”
where fI=" denotes the low-density expansion fofip to w B2e?
orderp" included, and the quantum corrections read =ﬁ2§ - +0O(h*) (187)
BAf k¥ (B.p.Bo) and
- pBe? 2 2
- 2 2 3 e e
A C R I N R

. — Be? 27 p%e® 1
_ 3 - _ 522t = LlE 4
,!'Tozm Q( Uc=0 (181) A~ uCL (Ug)+Oy (A% (189
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As a consequence, we get with Czew)\iBOIth, is expressed as an effective one-
dimensional Gaussian measure
Aqufg?S/Z}(ﬂerBo)
2,2

1 1 R
- e D(fx)exr{— [Cas[ aseiohssacs)| @2
=—ﬁ2P2[1+BKDez]gT o Jo

2
1+—L[3](uc)}
Uc

and coy,(s,s’;Bg) is identified as the Green function

K(s,s') of the quadratic operatdk(s,s’). The calculations
can be made explicitly by using basic properties of the
Gaussian measui2(£). Indeed, a characteristic property of
generalized Gaussian measure is the followind:[I§, ] is a
linear functional of¢, anddé,,

+0y( p°h*). (189

Equation(189 shows one that in the semiclassical limit, the
difference between the direct term with or withdg and its
classical corresponding contribution up to orgé® gener-
ates diffraction terms at ordér>. When the latter ones are
added to the diffraction contributions already present in _ 1
BATL=%2 given by Eq.(182), the diffraction terms at order f D(§y)exp{|F[§y]}=exp[ - Ef D(fy)(F[fy])Z]v
#.2p®? cancel each other. Eventually, theexpansion of Eq. (A3)
(180 starts as
wherefD(gy)(F[gy])2 is in fact a function of the covari-
BLEVBI=SZ—f i fgial ances  [D(£,)&y(9)€,(s), JD(&)déy(s)éy(s"), and
5 5 JD(&y)d§,(s)déy(s"). The expressions of the free covari-
= BfL=52 1 12 A ances involving derivatives are derived from Hg6). By
cl P76 "m using the Itolemma introduced in Sec. Il B of Paper I, we
get

2

1+ —LBN(ue)
Uc

+0y(p?h%). (190

1
On the other hand, thé expansion of the free energy D(fx)J’ D(gy)eXp{'Cfo [§Xd§y(s)—§yd§x(s)]J
around its classical valug; at finite density may be ex-

— 1 1
pressed from Eqg5.4—(5.9) of Ref.[8] as _ D(§X)exp{ —ZCZJ dsf 4s
o Jo

2
ﬁ[fMB_ fpara_ f gial = chl"'%lgzthze_ 1+ 3 L[3](Uc)

M Ue ><[6(s—s')—1]§x<s)§x<s’)]. (A4)
+0, (A%, (191

The quadratic form in the exponential of the right-hand side

where the term of orde? is exactly of ordep?. Compari-  can be written in terms of an operath(s,s’) as in Eq.(A2).
son of Egs(190 and(191) shows one that the expansion The corresponding Green functioK(s,s’), such that
up to orderp®? of the semiclassical™® given in Eq.(191) ds'[ds' A(s,s"YK(s",s') = 8(s—s'), is the solution of the
up to order#? coincides with the expansion(190) up to equation
order#? of fMB{32  As a conclusion, we have checked that

the double expansion with respect poand# of the free d? ) ) , T
energy is independent of the order in which the two expan- ~ ~ g X(s,8")+2C% K(s;s')— fo ds’K(s".s’)
sions are performed.
=4(s—9'), (A5)
ACKNOWLEDGMENT with K(0:8') = K (s,0)= 0.
This work was partially supported by the gten Rhane- (b) In the “sources” method, the covariance is derived as
Alpes. the second functional derivative of the generating functional
Z(B),
APPENDIX A
5 N 1 S8%Z[E))
There are three different methods that allow one to obtain A€oV, (S,S";Bo) = B 5 (soE(sn| (A6)
OE,(S)6E (") |._,

the values(47) and (48) of the covariances for independent
particles in a magnetic field. The first method provides one . . .
only with cov(s,s’; B,) and may be found ifil8] as a part WhereZ(E) is the m_tegrated measure in the presence of an
of a more intricate calculation. We summarize it very external fieldE that is linearly coupled to the fielg,

quickly and we give two other methods which we have de- 1

vised. Z[E]Ef DBO(g)exp{)\a,BJO ds’ E(s”)~§(s”)].

(a) In the first method, the two-dimensional measure (A7)

1 . . .. .
i _ This functional can be calculated explicitly when it is ex-
D D exp iC dé,(s dé(s)]|, (A1 ' : . "
(£JD(&) ’{ fo [68,(5)~6,06(9)] | (AL) pressed as a path integral in the phase spaita positions
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and momenta as variab)eand when the gauge is chosen to By introducing the velocity operatorv=(1/m,)[p
beA=(0,B,x,0). Indeed, with the latter choice, the integrals — (e, /c)A], the Hamiltonian can be rewritten &g (s)
over the variableg, and &, are trivial and the problem is = (m,/2)v¥(s). For a uniform magnetic fieldy, [vy,vy]
reduced to the calculation of the path integral of a ON€-—iz 4. /m, in any gaugg19] and in Schrdinger as v&lell

dimensional harmonic oscillator in the presence of a uniform¢ i, Heisenberg representation. In the symmetric gauge
external force that depends on timas on page 131 of Ref. _ (1/2)By/\r

[17]. The result may be expressed as the exponential of a

guadratic form 1 dvy(s) A
1 1 Tﬁﬁ ds - wCaBO/\VH(S) ' (A13a)
Z[E]zexp[(xiﬁzlz)f dsJ' ds'E,(S)E,(S")KS (s,S")
0 0
1 d
(A8) — rd”is)sz(s). (A13b)

so that co{,(s,s';Bg) =[K},(s,s") + K7, (s',8)]/2.

(0 In the third method, the covariance may be expressedhusr,,(s) andvy(s) turn around the axi8, with an imagi-
in terms of time-displaced correlations for position operatorsyary frequency S wc,=2ilc, ,

in Heisenberg representation,

1

)\iCO\/:w(S,S';BO)IH(S—S')GM,,(S,S') Xy(S) =X+ {—i[v]ysinh(2uc¢,s)

Wcy
TOS'=9)G,u(shs), (A9 +[V],[1- cosh2uc,s) 1}, (A14)
where 1
Yu(s)=y+ —{—[V][1—cosh2uc,s)]

6. (5,50 {08 AT, Lr(s)1,I0) " we °

e (0le™ N5 «|O) ' —i[V],sinh(2uc,s)}. (AL5)
(A10)

Thus the calculation of the covariance reduces to the calcu-
The calculations can be made explicitly because the equaation of matrix elements(r*|exp[—ﬂhg%) 21010,|1,),

tions of m.otion for the posi'Fion opergtors are those of a “ni'vvhereol and O, are the components of either the position
form rotation around the axis &,. This method is the most ;. i1 velocity Schrdinger operators.

elementary as regards its application. The details can be sum- tha value of the thermal propagator between two nonco-

mari_zed in four steps as follows. . ) ) incident points may be found in the literatufeee, for in-
First, the calculation of the covariance is changed into the

determination of matrix elements of operators in Heisenber&tance[lﬂ)' For a magnetic field@y=Bqe,, it reads
representation. According to Eqg.2)—(45), and the relation
between path integrals of functions and the corresponding
operators in Heisenberg representatisee page 174 of Ref.

1 Ucy
2m\2)32 sinfuc,,

)
(role BhBo~d|fa>:(

[17)),
(0) 1 2 Uca
(r.Je Pegalr M1, 1,0r.],+12coV: (s,5';Bo)} xexp — o3| (2= Za) g o
= (s~ )(r,|e 5o ry(s)]Lru(s) 1,1y X[ (Xo—Xa)?+ (Yo~ Ya)?]
+0(5’—S)(r*|e*ﬁh(s(:,),a[rH(sr)]V[rH(s)]#|r*>, U (K a Xy )} (AL6)
(All) Ca\2AbYa a¥Yb .

where(r*|exp[—ﬂhg?]a]lrg is given by Eq.(42) andry(s) Since the position operator is diagonal in the basjs the
is the position operator in Heisenberg representation at th@atrix elements wittO,=[r], andO,=[r], are just equal
imaginary timet= —iB#s . The operators without any sub- to[r,],[r.], times(r*|exp[—ﬁhg?ya]|r*>. WhenO,=[r],
script are in Schrdinger representation. and O,=[v],, we use the commutation relation

Then rH(S) is determined by the equations of motion in [[r]# ,[V] 1/]: i (ﬁ/ma) 5#”]“ the Herm|t|c|ty of operators and
Heisenberg representation in imaginary time. They read  the result

dpy(s _n0

de—i)=ﬁ[h<H°>(s>,pH<s>], (A123) (r.lve™#"soalr,)=0. (AL7)

dro(s) WhenO; andO, are velocity components, we use the Her-
m(sS) _ (0) miticity of operators again to reduce the calculation to that of
ds =Bl (). TH(s)]. (A12D) the following matrix elements:
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_ pp0) _ ph0)
(rulvIEe P r)=(r.|[VIje #"Balr.) Fventually
2
1 Uc (0) _ 5 3
_ @ —ph® lgq=—A4m[K,—2K ],B(Epe)
Bm, tantug, (" +1& 7 eeelr) . I e
(A18) Ll a1
X e, |=—1—
% Py Ipa| Kp (B7)

(rIVIIVIe #8lr,) = —(r. [V [Vl #"8o.lr.)
1 © and we get the formulél52).
=i——ucy(r.|e #s.qlr,).

BM,

2. Contributions from diagrams of Fig. 6

(A19) Again, the contributions from Figs.(® and Gb) are

Finally, we get the results given in Eq&7) and (48). readily expressed as Fourier transforms of convolutions and
involve functionsK,, defined in Eq(153. The results are

APPENDIX B 4
L - ¢ q=8m2K ﬁﬁi > pe L (B8)
The present appendix is devoted to the derivation of the 63— 7T N2 Ipa \ S PySy 3
contributions from classical diagrams to,ig(p'(f*’MB) at or- P
der p®2.
g 32, 6 3 ¢ 1
Lot =3 7 Ksp > pe 5 = | (B9)
1. Contributions from diagrams of Fig. 5 Y Pa| kp

Contributions from diagrams of Figs(&, 5(b), and ¢) g contribution from diagram(6) may be written in terms
are simply expresse~d in terms~of Fourier tranform of CONVO- ¢ L, with the definition(B4). As in the case of ;, we use
lutions that involve¢p(q) and #*(q). We notice thate],  Eq. (B5) and an integration by parts to write, in terms of
=r7(§lypyer;)/r9pa. By using Eq.(129 and introducing the K, andKj,
definition (153) we find

. . L,=32733K,— 4K,]. (B10)
J
- _ 5 7 3 4| =
ls@=—47K.f8 19[)01[(23/ pyey> (; Pw%)KD' Finally
B1
( ) 8 2 6 3 N J 1
2 571 11 |6(c):§77 [3K,—4K3]8% L v by
lop=—47K 8% S p.e2| —S poe, | = d Pal xp
5(b) 1 ~ PyEy Ipa| Py 7’_KD' (B11)
(B2) and we get formuld154).
5 3 ? 4| 9|1
Is= —87KyB 2 P€y 2 pPy€, ﬁ K_D . 3. Contributions from diagrams of Fig. 7
_ (B3) We introduce the “bridge” integral with six bonds®®,
The contribution from the diagram(@ containsL; with the B dk dk’ dk” , ,
definition | bridge 6= 2m3) (2 (277)3¢(")¢(k ) (k")
dg - dg’ - , X p(k—k")p(k—K") (k" —K"). (B12)
anf e )3[¢<q>12J A
m 7 The symmetry factor of diagram@ is equal to 3!, because
- 1., any permutation of the three internal points does not change
X[p(a)]"5b%(a"). (B4 the integrand. Thus

If we notice that

f 99 B — 2T —3”(i)
SO a- 0= = T

1 3
3 3
| 7(a):§/36ea( 27 pyey) I'oridge 6

1 .9
= p—
(B5) 24" dp,

a4
S 1,6l

¥

Ioridge 6 (B13

then a mere integration by parts allows one to reexpkgss The symmetry factor of diagram() is 4, because, if 1 and
in terms ofK,; andK,, 2 denote the two points that are linked to the root point while
3 and 4 label the two other internal points, the allowed per-
L, =87 [K,—2K,]. (B6)  mutations that do not change the integrand are the following:
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the identity, the permutation of 1 with 2, that of 3 with 4, and notice  that 12}, &= — (27/3)dlprigge 6/d(x3) and €?
the simultaneous permutations of 1 with 2 and 3 with 4. The= (1/4wB)9«x3/dp,,. Henceforth
contribution from Tb) is

1 N 1l 4
_ 2 3| 12 brid
l70)=— ZB7ea( Ey: p’ye'y) Ihige 6 (B14) |7(b>:—24ﬁ6—§:)jeg(2y Pye§> (B15

where |7}, ¢ denotes an expression similar to E@12)
where ¢(k) is replaced by[¢(k)]>. Moreover, we and we obtain Eq(155).
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